tìm n thuộc N để b= 6n+5 chia hết cho 5n+6 rút gọn được.
Nhanh đang cần gấp ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 3n+6 chia hết cho 3n+6
=>2(3n+6) chia hết cho 3n+6
=> 6n+3-6n+12 chia hết cho 3n+6
-9 chia hết cho 3n+6
=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}
3n={-5,-7,-3,-9,3,-15}
n={-1,-3,1,-5}
a) n không có giá trị
b) n = 2
c) n= 6 ;8
d)n khong có giá trị
e) n= 3
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
Để \(B\in Z\Rightarrow5n+8⋮6n+7\)
\(\Rightarrow6.\left(5n+8\right)⋮6n+7\)
\(\Rightarrow30n+48⋮6n+7\)
\(\Rightarrow5.\left(6n+7\right)+13⋮6n+7\)
\(\Rightarrow13⋮6n+7\Rightarrow6n+7\inƯ\left(13\right)=\pm1;\pm13\)
b,GỌI Ư CLN\(\left(5n+8;6n+7\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}5n+8⋮d\Rightarrow6.\left(5n+8\right)⋮d\Rightarrow30n+48⋮d\\6n+7⋮d\Rightarrow5.\left(6n+7\right)⋮d\Rightarrow30n+35⋮d\end{cases}}\)
\(\Rightarrow\left(30n+48\right)-\left(30n+35\right)⋮d\)
\(\Rightarrow13⋮d\Rightarrow d=1;-1;13;-13\)
\(+d=13\Rightarrow6n+7⋮13\Rightarrow2.\left(6n+7\right)⋮13\)
\(\Rightarrow12n+14⋮13\)
\(\Rightarrow\left(12n+n\right)+\left(14-n\right)⋮13\)
\(\Rightarrow13n+\left(14-n\right)⋮13\)
\(\Rightarrow14-n=13k\)
\(\Rightarrow n=14-13k\)
Vậy \(n=14-13k\)thì B rút gọn đc
Để phân số \(B=\dfrac{6n+5}{5n+6}\) rút gọn được thì 6n+5 và 5n+6 cùng chia hết cho d(Điều kiện: d∈N và d>1)
⇔6n+5-5n-6⋮d
⇔n-1⋮d
mà 5n+6⋮d
nên 5n+6-5(n-1)⋮d
⇔5n+6-5n+5⋮d
⇔11⋮d
⇔d∈Ư(11)
⇔d∈{1;11}
Kết hợp ĐKXĐ, ta được: d=11
⇔n-1=11k(k∈N)
hay n=11k+1(k∈N)
Vậy: Khi n=11k+1(k∈N) thì \(B=\dfrac{6n+5}{5n+6}\) rút gọn được