K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

13 tháng 8 2015

a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13) 
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13) 
Cộng lại ta có: 
222^333 + 333^222 ≡ 0 (mod 13) đpcm 

b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

( tick đúng cho mink nha)

12 tháng 2 2016

Là điều phải chứng minh đó

10 tháng 3 2016

du 2 h cho minh nha

25 tháng 10 2016

3^(3*15)+4.4^(2*51)

(27)^15+4.16^51

có 27 chia 13 dư 1 

16 chia 13 dư 3 =>4.16^51 chia 3 dư 12

1+12=13 vậy chia hết cho 13

27 chia 11 dư 5

16 chia 11 dư 5

5+5*4=25 ko chia cho 11

2 tháng 8 2017

hay nhưng viết mỏi tay

11 tháng 1 2020

b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)

2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)

Từ (1)  và  (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)

                     =>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)

Ta có:43 \(\equiv\)1 (mod 7)

=>(43)1111\(\equiv\)11111 (mod 7)

=>43333\(\equiv\)1 (mod 7)

=>-43333\(\equiv\)-1(mod 7)

=>1-43333\(\equiv\)0 (mod 7)

=> 55552222+22225555\(\equiv\)0 (mod 7)

Vậy 55552222+22225555\(⋮\)7