Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có NHC = ABC (cùng phụ với HCB) (1)
Vì ABDC là tứ giác nội tiếp nên ABC = ADC (2)
Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra
∆ADC = ∆AEC (c.c.c) => ADC = AEC (3)
Tương tự ta có AEK = ADK
Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o
Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)
+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD
Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)
nên ^ACD = ^AEC (1)
+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)
Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)
\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)
vì AB =AC => sđ cung AB = sđ cung AC
=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC )
=> AEB = 1/2 sđ AD =ABD
CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE
2). Từ AD là phân giác B A C ^ suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.
Từ 1). Δ B D M ∽ Δ B C F , ta có D M C F = B D B C .
Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E (3).
Ta lại có góc nội tiếp A D E ^ = F C E ^ (4).
Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C
a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:
I B K ^ = I C K ^ = 90 0
=> B, C, I, K ∈ đường tròn tâm O đường kính IK
b, Chứng minh
I
C
A
^
=
O
C
K
^
từ đó chứng minh được
O
C
A
^
=
90
0
Vậy AC là tiếp tuyến của (O)
c, Áp dụng Pytago vào tam giác vuông HAC => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm
a) CMR: 4 điểm B, I, C, K cùng thuộc (O).
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.
Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên CK là phân giác ngoài của góc C.
Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90
Chứng minh hoàn toàn tương tự ta có: ∠IBK=90
Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180
⇒BICK là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)
Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.
Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.
b) CMR: AC là tiếp tuyến của (O).
Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.
Mặt khác, theo tính chất góc ngoài của tam giác ta có :
∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC
⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.
Do đó AC là tiếp tuyến của (O) tại C (đpcm).
c) Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.
Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.
Ta có ngay :
S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)
= π.IK2/4 −(BM.IK)/2−(CM.IK)/2
=πIK2/4 − (BC.IK)/2
Ta có :
S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM
⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM
⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.
Áp dụng hệ thức lượng trong tam giác IBM vuông tại B có đường cao BM ta có :
BM2=IM.MK ⇔MK=BM2/IM=122/6=24
⇒IM=IM+MK=6+24=30.
⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.302 −1/2(24.30 ) =225π−360 ≈346,86 (dvdt)
1) Xét (O) có
ΔABC nội tiếp đường tròn(gt)
nên O là giao điểm ba đường trung trực của ΔABC
hay AO là đường trung trực của BC
⇒AO⊥BC
Ta có: AO⊥BC(cmt)
AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))
Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)
2) Xét ΔADE và ΔCDB có
\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)
DA=DC(D là trung điểm của AC)
\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)
Do đó: ΔADE=ΔCDB(c-g-c)
⇒AE=CB(hai cạnh tương ứng)
Xét tứ giác ABCE có
AE//CB(cmt)
AE=CB(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)