K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét (O) có 

ΔABC nội tiếp đường tròn(gt)

nên O là giao điểm ba đường trung trực của ΔABC

hay AO là đường trung trực của BC

⇒AO⊥BC

Ta có: AO⊥BC(cmt)

AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))

Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)

2) Xét ΔADE và ΔCDB có 

\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)

DA=DC(D là trung điểm của AC)

\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)

Do đó: ΔADE=ΔCDB(c-g-c)

⇒AE=CB(hai cạnh tương ứng)

Xét tứ giác ABCE có 

AE//CB(cmt)

AE=CB(cmt)

Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

 

21 tháng 11 2019

Ta có  NHC = ABC (cùng phụ với HCB)                         (1)

Vì ABDC là tứ giác nội tiếp nên ABC = ADC                  (2)

Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra

∆ADC = ∆AEC (c.c.c) => ADC = AEC                           (3)

Tương tự ta có AEK = ADK

Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o

Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)

21 tháng 1 2021

+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD

Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)

nên ^ACD = ^AEC (1)

+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)

Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)

\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)

22 tháng 2 2021

vì AB =AC => sđ cung AB = sđ cung AC 

=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC ) 

=> AEB = 1/2 sđ AD =ABD 

CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE 

30 tháng 1 2018

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

23 tháng 5 2019

a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:

I B K ^ = I C K ^ = 90 0

=> B, C, I, K ∈ đường tròn tâm O đường kính IK

b, Chứng minh  I C A ^ = O C K ^  từ đó chứng minh được  O C A ^ = 90 0

Vậy AC là tiếp tuyến của (O)

c, Áp dụng Pytago vào tam giác vuông HAC  => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm

1 tháng 4 2021

a)     CMR: 4 điểm B, I, C, K cùng thuộc (O).

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90

Chứng minh hoàn toàn tương tự ta có: ∠IBK=90

Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180

⇒BICK  là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.

b)     CMR: AC là tiếp tuyến của (O).

Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC

⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.

Do đó AC là tiếp tuyến của (O) tại C (đpcm).

c)     Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.

Ta có ngay :

S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)

= π.IK2/4 −(BM.IK)/2−(CM.IK)/2

=πIK2/4 − (BC.IK)/2

Ta có :

     S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM

⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM

⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.     

Áp dụng hệ thức lượng trong tam giác IBM vuông tại B  có đường cao BM ta có :

BM2=IM.MK ⇔MK=BM2/IM=122/6=24

⇒IM=IM+MK=6+24=30.

⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.30−1/2(24.30 )  =225π−360 ≈346,86  (dvdt)