cho tam giác ABC vuông tại A,có góc B=20 độ.Trên tia đối AC sao cho AD=AC. a,tam giác BCD là tam giác gì? b,BC=2AC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
17 tháng 3 2017
a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều
b) Dùng kết quả câu a, ta có BC = CD = 2AC
a) Ta có: AD=AC(gt)
mà A nằm giữa hai điểm C và D(gt)
nên A là trung điểm của CD
Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD_
BA là đường cao ứng với cạnh CD(BA⊥CA, D∈CA)
Do đó: ΔBCD cân tại B(Định lí tam giác cân)
Sửa đề: Góc B = 30 độ
----------------------------------------
a) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)
\(\Rightarrow\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
Xét ΔBAD và ΔBAC ta có:
AD = AC (GT)
Góc BAD = Góc BAC (= 900)
AB: canhj chung
=> ΔBAD = ΔBAC (c - g - c)
=> Góc C = Góc D (2 góc tương ứng)
=> Tam giác BDC cân tại B (1)
ΔABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{ABC}=90^0-30^0=60^0\left(2\right)\)
Từ (1) và (2) => Tam giác BDC đều
b) Tam giác BDC đều
=> BC = CD
Mà: CD = 2. AC
=> BC = 2.AC