K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

9 tháng 11 2021

TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM

9 tháng 11 2021

em cảm ơn a

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Đề sai. Nếu $x,y$ đều âm thì điều kiện $xy> 2020x+2020y$ được thỏa mãn nhưng hiển nhiên $x+y$ không thể lớn hơn $(\sqrt{2020}+\sqrt{2021})^2$

20 tháng 9 2021

nếu x,y dương

 thì sao Akai Haruma ?

12 tháng 7 2021

Bài 1.

Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)

\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)   (1)

Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)

\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)

\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)          (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Bài 2: 

Ta có: (2a+1)(2b+1)=9

nên \(2b+1=\dfrac{9}{2a+1}\)

\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)

\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)

\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)

Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)

\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)

\(=\dfrac{3+2a+1}{3a+6}\)

\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)

21 tháng 6 2023

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

21 tháng 6 2023
Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với

1 tháng 2 2020

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa 

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1