Chứng minh bất đẳng thức: \(a^2+b^2+c^2\ge2\left(ab+bc-ac\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )
Dấu \("="\) hiển nhiên xảy ra khi \(a=b=c\)
\(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)
Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)
Vậy BĐT đầu luôn đúng
Thích Dirichlet thì chơi Dirichlet
Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.
Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh
\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)
Dấu = xảy ra khi a = b = c = 1
ta có : \(\left(a-1\right)^2\ge0\forall a\Rightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(b-1\right)^2\ge0\forall b\Rightarrow b^2+1\ge2b\left(2\right)\)
Lấy (1)+(2) ta có : \(a^2+1+b^2+1\ge2a+2b\forall a,b\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\forall a,b\)
Theo BĐT AM - GM :
\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)
\(b^2+1\ge2\sqrt{b^2}=2\left|b\right|\ge2b\)
Khi đó ta có đpcm
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
A)
\(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\\ \Leftrightarrow2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\)
\(2A^2+2B^2\ge A^2+2AB+B^2\\ \Leftrightarrow A^2+B^2\ge2AB\\ \Leftrightarrow A^2+B^2-2AB\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (1)
\(A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow A^2+B^2\ge2BA\\ \Leftrightarrow A^2+B^2-2BA\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (2) Từ (1), (2) ta có: \(2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\left(đpcm\right)\)a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
Ta có:
\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)
\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)
Cái bất đẳng thức áp dụng trong bài là:
\(x^2+y^2+z^2\ge xy+yz+zx\)
ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0
dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1
Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y)
Tương tự ta có: y^3+z^3≥ yz(y+z)
z^3+ x^3≥ xz(x+z)
Cộng vế với vế ta có:
2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz²
Cộng 2 vế với x^3+y^3 +z^3 ta có:
3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*)
Theo cô si ta có:
x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1)
=> 3(x^3+y^3+z^3) ≥ 3(x+y+z)
=> x^3+y^3+z^3 ≥ x+y+z
=> dpcm
Chứng minh tương đương là xong nha
\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)
\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng
dấu = khi a=c
_Kudo_
Áp dụng bđt Bunhiacopski:
\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)
Dấu "=" khi a = c
Ta có
\(a^2+b^2+c^2\ge2\left(ab+bc-ac\right)\Leftrightarrow\text{ }a^2+b^2+c^2+2ac-2ab-2bc\ge0\)
\(\Leftrightarrow\left(a+c\right)^2+b^2-2b\left(a+c\right)\ge0\)
\(\Leftrightarrow\left(a+c-b\right)^2\ge0\) luôn đúng
đấu bằng xảy ra khi "a+c-b=0