So sánh A Và B biết:
A= 102001+1 B= 102002+1
102002+1 102003+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\) 10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)
10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\) 10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)
10A=1+\(\frac{9}{10^{2007}+1}\) 10B=1+\(\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)
Nên 10A>10B=>A>B
Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)
\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}\)
\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
a<b chắc chắn luôn