Cho \(x_i\in\left[1;\sqrt{2}\right]\)
Chứng minh: \(\frac{\sqrt{x_1^2}-1}{x_2}+\frac{\sqrt{x_2^2}-1}{x_3}+...+\frac{\sqrt{x_n^2}-1}{x_1}\le\frac{n\sqrt{2}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(w=y-1+yi,y\in R\)
Là đủ nếu chứng minh được, tồn tại số thực duy nhất x sao cho
\(\left(x-1\right)^2+x^2\le\left(y-1\right)^2+y^2\) với mọi \(y\in R\)
Nói cách khác, x là điểm cực tiểu hàm số :
\(f:R\rightarrow R,f\left(y\right)=\left(y-1\right)^2+y^2=2y^2-2y+1=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)
Do đó, điểm cực tiểu là
\(x=\frac{1}{2}\Rightarrow z=-\frac{1}{2}+\frac{1}{2}i\)
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)
Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).
Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).
Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).
Giải:
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).
Chứng minh tương tự...
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).
Mặt khác với mọi \(i\in\overline{1,n}\) ta có:
\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).