Cho A=\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.......+\frac{1}{2006^2}\).Chứng minh:A<\(\frac{334}{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)
\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)
Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)
\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)
\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)
Vậy:.....
Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
A.2=2 +2^2+2^3+...+2^6
b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)
A=2^6-1
a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)
A = 3 + 6 + 9 + ... + 2007
=>A = 3( 1 + 2 + 3 + ... + 669 )
=> A = \(3\cdot\left(\frac{670\cdot669}{2}\right)\)
=> A = \(3\cdot224115\)= 672345
B = \(2\cdot53\cdot12+4\cdot6\cdot87-3\cdot8\cdot40\)
=> B = 24 * 53 + 24 * 87 - 24 * 40
=> B = 24 * ( 53 + 87 - 40 )
=> B = 24 * 100 = 2400
c) ta có Tử số = \(2006\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)\)
Mẫu số = \(\frac{2007-1}{1}\)+\(\frac{2007-2}{2}\)+...+\(\frac{2007-2006}{2006}\)
=> Mẫu số = \(\frac{2007}{1}\)\(-1\)+ \(\frac{2007}{2}\)\(-1\)+ ... + \(\frac{2007}{2006}\)\(-1\)
=> Mẫu số = \(\frac{2007}{1}\)+ \(\frac{2007}{2}\)+ ... + \(\frac{2007}{2006}\)- ( 1 + 1 + 1 + ... + 1 ) ( 1 + 1 + ... + 1 có 2006 số hạng 1 )
=> Mẫu số = ( 2007 - 2006 ) + \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(\frac{2007}{2007}\)+ \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)\)
=> C = \(\frac{TS}{MS}\)= \(\frac{2006}{2007}\)
1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)
\(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)