Cho ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho BD = BA. Gọi M là trung điểm
AD. a/Chứng minh . b/Vẽ tia BM cắt AC tại E. Chứng minh ED BD ⊥
c/ Trên cạnh MD lấy điểm I sao cho MI = ID. Qua I vẽ đường thẳng vuông góc với MD cắt cạnh ED tại K. Tư M vẽ
đường thẳng vuông góc với cạnh AB tại H. Chứng minh 3 điểm M; H; K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình và viết giả thiết và kết luộn nhé và mình chỉ biết làm được câu 1 thôi bạn thông cảm và bạn cũng viết khó hiểu cúa.
(1)xét tam giác ABM VÀ tam giác DBM có:
AM=DM(gt)
BM CẠNH CHUNG(GT)
BD=BA(GT)
suy ra tam giác ABM=tam giác DBM (c-c-c)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
c: Xét ΔBEM vuông tại E và ΔBAC vuôg tại A có
BE=BA
góc EBM chung
=>ΔBEM=ΔBAC
=>BM=BC
a: Xét ΔBAI và ΔBDI có
BA=BD
AI=DI
BI chung
=>ΔBAI=ΔBDI
b: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>góc BDE=90 độ
=>DE vuông góc BC và EA=ED
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)