K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (giả thiết)

$AM$ chung

$BM=CM$ (cmt)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) 

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$

Xét tam giác $BAK$ và $CAK$ có:

$BA=CA$ (gt)

$AK$ chung

$\widehat{BAK}=\widehat{CAK}$ (cmt)

$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)

$\Rightarrow KB=KC$ 

c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$

hay $\widehat{EBK}=\widehat{FCK}$

Xét tam giác $EBK$ và $FCK$ có:

$\widehat{EBK}=\widehat{FCK}$ (cmt)

$BK=CK$ (cmt)

$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)

$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)

$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$

$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$

$KB=KC$ nên tam giác $KBC$ cân tại $K$

$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$

Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$ 

Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

a: Xét ΔABM và ΔADM có

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

a Xét ΔABM và ΔADM có 

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: KB=KD