K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

a) Ta có BD và CE đều vuông góc với d

   Nên góc CEA=góc BDA (=90 độ)

  Mà 2 góc này ở vị trí đồng vị

  Nên BD//CE

b)  Ta có d// BC

  ---------> góc ECB=góc DBC=góc CED ( =90 dộ )

 Nên ECDB là HCN

Mà ABC là vuông cân            nên góc ECA=góc  DBA= 45 độ

-------->tam giác CEA = tam giác DBA ( cạnh huyền góc nhọn)

c)( mình lười bấm quá nên mình làm tắt nha)

 Chứng minh góc CAE= góc BAD   ( do góc ECA= góc DBA  và góc ACB=góc EAC=45 độ do ED//BC)

 Nên CE=EA và DB=AD, mặt khác AE=AC ( do 2 tam giác bằng nhau cm câu b)

 

 

 

 

   

 

  

18 tháng 2 2020

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

mình không biết

29 tháng 3 2020

Mng tự vẽ hình hí ^_^
   Với lại là mình k gõ dấu góc đc nên mình ghi tắt là g nha....
                                                                           Chứng minh:
 a) BD// CE?
   Vì BD⊥d,
       CE⊥d
    =>BD//CE ( tính chất 1 )
b) ΔADB=ΔAEC?
   Xét 2 Δvuông: ΔADB và ΔAEC:
                              AB   =     AC (vì ΔABC cân tại A)
                           gDBA =  gECA [(vì gABC+ gDBA= gB và
                                                         gACB+ gECA= gC mà
                                                     gABC= gACB (vì ΔABC cân tại A)]          
                       Suy ra: ΔADB= ΔAEC (ch_gn) (đpcm)
c) BD+ CE= DE?
   Vì ΔADB= ΔAEC (câu b)
 =>BD=AE
     CE=AD
    Ta có: BD+ CE= AE+AD= DE
  Vậy: BD+ CE= DE (đpcm)
 

đây ko phải là toán lớp 1 nha

16 tháng 1 2016

Ta có   1   +     2  +    3  = 180 độ

Mà Â 2  =  90 độ

Suy ra  1   +    2  = 90 độ

Tam giác vuông ABD có :

Â1 + C^  =  90 độ

Mà Â 1 + Â 3  = 90 độ

Suy ra  3 =  góc ACE

Xét tam giác BDA tam giác AEC có :

BA = CA ( GIẢ THIẾT )

Góc DAB = Góc ECA ( CHỨNG MINH TRÊN )

Suy ra tam giác BDA = tam giác AEC(ạnh huyền -góc nhọn )

Suy ra AE = BD (2 cạnh tương ứng )

AD = CE ( 2 cạnh tương ứng )

ta có DE = AE + AD

Suy ra DE = BD + CE