K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

Qua $M$ kẻ $EF\perp AB, CD$ với $E\in AB, F\in DC$

Dễ thấy $AEFD$ và $EBCF$ là hình chữ nhật do có 4 góc vuông.

Do đó $AE=DF; EB=CF; EF=AD=BC$

Áp dụng định lý Pitago ta có:

\(MA^2+MB^2+MC^2+MD^2=AE^2+EM^2+EB^2+EM^2+CF^2+MF^2+DF^2+MF^2\)

\(=(AE^2+DF^2)+(EB^2+CF^2)+2EM^2+2FM^2\)

\(=2AE^2+2BE^2+2EM^2+2MF^2=2[(AE^2+BE^2)+(EM^2+MF^2)]\)

Áp dụng BĐT AM-GM ta có:

\(MA^2+MB^2+MC^2+MD^2=2(AE^2+BE^2)+2(EM^2+MF^2)\geq (AE+BE)^2+(MF+EM)^2\)

\(=AB^2+EF^2=AB^2+AD^2=2\)

Ta có đpcm.

Dấu "=" xảy ra khi $M$ là tâm hình vuông.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

31 tháng 1 2019

Cần ko gấp

14 tháng 1 2018

M A B C D

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Đại số lớp 7

Qua M kẻ \(FG\perp AB,CD\) như hình vẽ

Ta thấy $AFGD$ và $BFGC$ có các góc đều là góc vuông nên chúng là hình chữ nhật. Do đó \(AF=DG; BF=CG\)

Áp dụng định lý Pitago cho các tam giác vuông ta có:

\(\left\{\begin{matrix} MA^2=MF^2+FA^2\\ MB^2=MF^2+FB^2\\ MC^2=MG^2+GC^2\\ MD^2=MG^2+GD^2\end{matrix}\right.\)

\(\Rightarrow MA^2+MC^2-(MB^2+MD^2)=FA^2+GC^2-(FB^2+GD^2)\)

Do \(AF=DG; BF=CG\Rightarrow AF^2=DG^2; BF^2=GC^2\)

\(\Rightarrow FA^2+GC^2-(FB^2+GD^2)=0\)

\(\Leftrightarrow MA^2+MC^2-(MB^2+MD^2)=0\)

\(\Leftrightarrow MA^2+MC^2=MB^2+MD^2\)

Ta có đpcm

26 tháng 11 2017

Mình trả lời luôn câu b hi

undefined