Cho tam giác ABC. Gọi D, M, E lần lượt là trung điểm của AB, BC, CA: a) Chứng minh rằng tứ giác ADME là hình bình hành. b) Tam giác ABC có điều kiện gì thì tứ giác ADME là hình chữ nhật. Mn giúp mình vs.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
D là trung điểm của AB(gt)
M là trung điểm của BC(gt)
Do đó: DM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒DM//AC và \(DM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E∈AC và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên DM//AE và DM=AE
Xét tứ giác ADME có
DM//AE(cmt)
DM=AE(cmt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Khi ΔABC cân tại A thì AB=AC
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên AD=AE
Hình bình hành ADME có AD=AE(cmt)
nên ADME là hình thoi(Dấu hiệu nhận biết hình thoi)
Vậy: Khi ΔABC cân tại A thì ADME là hình thoi
c) Khi ΔABC vuông tại A thì \(\widehat{A}=90^0\)
Hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Vậy: Khi ΔABC vuông tại A thì ADME là hình chữ nhật
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{10}{2}=5cm\)
Vậy: Khi ΔABC vuông tại A thì AM=5cm
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
a: Xét ΔABC có
M là trung điểm của BC
E là trung điểm của AC
Do đó: ME là đường trung bình của ΔABC
Suy ra: ME//AD và ME=AD
hay ADME là hình bình hành