Câu 1:
a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)
b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
Câu 2:
a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.
b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào?
Câu 3:
Cho tam giác ABC( AB= AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM= EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Câu 4:
Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.
Câu 5:
a) Cho a,b,c>0. Chứng tỏ rằng: M=\(\frac{a}{a+b}+\frac{b}{b+c}\frac{c}{c+a}\)không là số nguyên.
b) Cho a,b,b thoả mãn: a+b+c=0. Chứng minh rằng ab+bc+ca \(\le\)0.
Câu 6:
a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.
b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10;2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu?
Câu 7:
Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi \(\Delta APQ\) là 2. Chứng minh rằng góc PCQ bằng 45 độ.
Ai biết làm thì giải dùm.