K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)Câu 2:a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba...
Đọc tiếp

Câu 1:

a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)

b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

Câu 2:

a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.

b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào?

Câu 3:

Cho tam giác ABC( AB= AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM= EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

Câu 4:

Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.

Câu 5:

a) Cho a,b,c>0. Chứng tỏ rằng: M=\(\frac{a}{a+b}+\frac{b}{b+c}\frac{c}{c+a}\)không là số nguyên.

b) Cho a,b,b thoả mãn: a+b+c=0. Chứng minh rằng ab+bc+ca \(\le\)0.

Câu 6:

a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.

b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10;2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu?

Câu 7:

Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi \(\Delta APQ\) là 2. Chứng minh rằng góc PCQ bằng 45 độ. 

Ai biết làm thì giải dùm.

0
12 tháng 3 2020

Ai muốn gia nhập hội trai xinh gái đẹp thì k vào đây nha

12 tháng 3 2020

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Đổi chỗ các trung tỉ cho nhau ta được: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)\(\left(đpcm\right)\)

b)\(\Leftrightarrow\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)

Trừ cả 2 vế cho 2 . Đến đây thì dễ rồi.

10 tháng 2 2016

a/b=c/d=>a/c=b/d

\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)

theo t/c dãy tỉ số=nhau:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)

2) trừ 1 vào mỗi tỉ số

\(\Rightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1-\frac{x-3}{2002}-1=\frac{x-4}{2001}-1\)

\(\Rightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}-\frac{x-3-2002}{2002}=\frac{x-4-2001}{2001}\)

\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}=\frac{x-2005}{2001}\)

\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

\(\Rightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\frac{1}{2004}<\frac{1}{2003}<\frac{1}{2002}<\frac{1}{2001}\Rightarrow\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=>x-2005=0

=>x=2005

vậy x=2005

nhớ ****

18 tháng 8 2018

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => đpcm

12 tháng 4 2017

Đặt a/b=b/c=k

Suy ra a=bk , c=dk

Suy ra 5a + 3b/ 5a - 3b= 5bk + 3b / 5bk - 3b = b(5k + 3) / b(5k - 3 ) = 5k + 3 / 5k - 3  (1)

           5c + 3d / 5c - 3d = 5dk + 3d / 5dk - 5d = d(5k + 3) / d(5k - 3 ) = 5k + 3 / 5k - 3  (2)

Từ (1) và (2) suy ra (đpcm)

con mẹ thằng ngu thấy bố mày chưa

12 tháng 4 2017

Đây là bài giải của bạn Trần Như cách đây lâu rồi. Mình ghi lại vì không cop được link.

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất của tỉ lệ thức ta được:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

19 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{5a+3b}{5a-3b}=\frac{5x+3d}{5c-3d}\)

Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

19 tháng 10 2016

Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)

 

31 tháng 5 2015

mk giải bài này nhé:

từ a/b = c/d  => a/c = b/d   => 5a/5c = 3b/3d

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) áp dụng tính chất của tỉ lệ thức  ta được:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)       (đpcm)

 

31 tháng 5 2015

Đinh Tuấn Việt nổ dữ, hạng 1 ko xứng đáng vậy cho cậu lên trời ngồi à?

mới học chút xíu đã khoe khoang, làm phách

7 tháng 10 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\) và \(c=dk\)

thay vào biểu thức

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\) (1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\) (2)

Từ 1 và 2 suy ra đpcm

câu b tương tự bạn thay a=bk và c=dk rồi rút gọn như câu a là xong nha!

Ta có: a/b=c/d

Suy ra: 5a/3b = 5c/3d = 5a + 3b/5c + 3d = 5a - 3b/5c - 3d = 5a + 3b/5a - 3b = 5c + 3d/5c - 3d (áp dụng tính chất dãy các tỉ số bằng nhau)(đpcm)

 

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!