K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

ta có\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2};\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2};\frac{z}{\frac{1}{2}-z-3}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

7 tháng 2 2017

tổng các số x, y, z là:

2+3+( -5 )=0

số x là:0-3=-3

số y là:0-(-5)=5

số z là:0-2=-2

7 tháng 2 2017

Ta có (x+y)+(y+z)+(z+x)=2+3+(-5)

         (x+y)+(y+z)+(z+x)=0

         2x+2y+2z=0

         2(x+y+z)=0

         =>x+y+z=0

    Mà x+y=2 => z=0-2=-2

    Mà y+z=3 => y=3-(-2)=5

    Mà z+x=-5 => x= (-5)-(-2)=-3

    Vậy x= -3; y=5; z= -2

8 tháng 3 2017

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

11 tháng 3 2017

?????????????????????????

7 tháng 10 2018

đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)

<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

<=> ..bla bla tự làm nhá !

7 tháng 10 2018

Thanks bạn nhiều nhiều lắm nha

27 tháng 10 2019

Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có

\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương

\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)

\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)

Dấu "=" xảy ra khi  6iS2fUS.gif Giải hệ phương trình trên ta được 5vTcgmx.gif

27 tháng 10 2019

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\)   giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)

Thế nào nó bị lỗi nên không hiển thị