K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

\(\left\{{}\begin{matrix}x-2y=3\left(1\right)\\x^2+xy-5y=25\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^2+xy-5y-25=0\) 

\(\Delta=b^2-4ac=\left(y+10\right)^2\ge0\)

=> phương trình (2) có 2 nghiệm \(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=-y-5\end{matrix}\right.\)

- với x=5 thì y=1

-với x=-y-5 thay vào (1)=> y=\(-\dfrac{8}{3}\);\(x=-\dfrac{7}{3}\)

26 tháng 1 2023

Để giải hệ phương trình {x−5y=−24, x=3y}, ta có thể sử dụng các bước sau:

Chuyển đổi hệ phương trình thứ hai thành dạng x = 3y: x = 3y

Dùng hệ phương trình thứ hai để thay thế x trong hệ phương trình thứ nhất: x−5y=−24 => 3y-5y = -24 => -2y = -24 => y = 12

Dùng hệ phương trình thứ hai và giá trị y đã tìm được để tìm giá trị x: x = 3y => x = 3(12) => x = 36

Vậy, giải của hệ phương trình là (x, y) = (36, 12)

 
26 tháng 1 2023

\(\left\{{}\begin{matrix}x-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=36\end{matrix}\right.\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

18 tháng 8 2021

các bn ơi giúp mình với

 

13 tháng 12 2020

\(\left\{{}\begin{matrix}x^3+xy^2+3\left(x-2y\right)=0\\x^2+xy=3\end{matrix}\right.\)\(\Rightarrow x^3+xy^2+\left(x^2+xy\right)\left(x-2y\right)=0\)\(\Leftrightarrow x^3+xy^2+x^3-x^2y-2xy^2=0\Leftrightarrow2x^3-x^2y-xy^2=0\)\(\Leftrightarrow x\left(2x+y\right)\left(x-y\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=-2x\\x=y\end{matrix}\right.\)

+) \(x=0\Rightarrow0y=3\)(vô nghiệm)

+) y=-2x \(\Rightarrow x^2-2x^2=3\Leftrightarrow-x^2=3\)(vô nghiệm)

+) x=y\(\Rightarrow2x^2=3\Leftrightarrow x^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt{\dfrac{3}{2}}\\x=y=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

 

b) Ta có: \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(9x^2-1=0\)

\(\Leftrightarrow9x^2=1\)

\(\Leftrightarrow x^2=\dfrac{1}{9}\)

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

5 tháng 6 2021

undefinedundefined