Một tam giác vuông có độ dài 2 cạnh góc vuông lần lượt là 6cm và 8cm thì độ dài đường cao ứng với cạnh huyền là:
A) 3cm B) 2,4cm C) 4,8cm D) 5cm
(Các bn giải thích cách làm của mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago, ta có
32+42= 25
Cạnh huyền= \(\sqrt{ }\)25 = 5
\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC vuông tại A có sin C=AB/BC=5/13
nên góc C=22 độ
=>góc B=68 độ
AM=13/2=6,5cm
AH=5*12/13=60/13cm
Câu 2. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau :
A. 3cm; 5cm; 7cm
B. 4cm; 6cm; 8cm
C. 5cm; 7cm; 8cm
D. 3cm; 4cm; 5cm
\(3^2+4^2=5^2\)
Cái này còn được gọi là tam giác Ai Cập nữa nhé :))
Mình làm thế này có ổn ko?
Gọi tam giác ABC vuông tại A cạnh huyền BC là 10cm và đường cao AH (H thuộc BC) là 6cm
Vậy ta có: \(HB+HC=10\)
Dùng hệ thức lượng trong tam giác vuông ta có: \(HB.HC=AH^2=36\)
Vậy ta có: \(\hept{\begin{cases}HB+HC=10=S\\HB.HC=36=P\end{cases}}\)\
Vì \(S^2-4P=10^2-4.36\)\(=100-144=-44< 0\)
Vậy không có HB, HC nào thỏa mãn hpt trên (trái với hệ thức lượng trong tam giác vuông)
Vậy không có tam giác vuông có cạnh huyền là 10cm và đường cao tương ứng với cạnh huyền là 6cm
Cho tam giác ABC vuông tại A, AH là đường cao. AB = 24cm, AC = 7cm.
Áp dụng định lý Pytago ta có: \(BC=\sqrt{AC^2+AB^2}=\sqrt{7^2+24^2}=25.\)
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.7}{25}=6.72\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{25}=1,96\)
\(\Rightarrow HB=BC-HC=25-1.96=23.04\)
D 4,8 cm
Cách làm là
Xét tam gíac vuông có
\(6^2\)+\(8^2\)= 36+ 64= 100=\(10^2\)( Định lí pytago)
Ta có diện tích tam giác vuông là
6 x 8= đg cao x 10(cạnh huyền)
48 \(cm^2\) = đg cao x 10
48 : 10= đg cao
4,8 = đg cao
Vậy đg cao là 4,8 cm
Like nha bn
Cách làm là
Xét tam gíac vuông có
6262+8282= 36+ 64= 100=102102( Định lí pytago)
Ta có diện tích tam giác vuông là
6 x 8= đg cao x 10(cạnh huyền)
48 cm2��2 = đg cao x 10
48 : 10= đg cao
4,8 = đg cao
Vậy đg cao là 4,8 cm