Một oto dự định chạy từ A đến B trong thời gian nhất định. Nếu xe chạy với vận tốc 50km/h thì đến B muộn hơn so với dự định là 30 phút. Nếu xe chạy với vận tốc 60km/h thì đến B sớm hơn so với dự định là 30 phút. Tính quãng đường AB.
giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x ( đk x > 0 )
Nếu xe chạy với vận tốc 40km/h thì thời gian xe chạy hết quãng đường AB là : x40x40
⇒⇒thời gian dự định là : x40−12x40−12( h )
Nếu xe chạy với vận tốc 50km/h thì thioiwf gian xe chạy hết quãng đường AB là : x50x50
⇒⇒thời gian dự định là : x50+25x50+25(h)
Vì thời gian dự định không đổi nên ta có phương trình :
x40−12=x50+25x40−12=x50+25(1)
Giải phương trình (1) , ta có :
phương trình (1) ⇔5x200−100200=4x200+80200⇔5x200−100200=4x200+80200
⇒5x−100=4x+80⇒5x−100=4x+80
⇒x=180⇒x=180(tm)(tm)
Vậy quãng đường AB dài 180km
Tham khảo :
Gọi quãng đường AB là x ( đk x > 0 )
Nếu xe chạy với vận tốc 40km/h thì thời gian xe chạy hết quãng đường AB là : \(\frac{x}{40}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{40}-\frac{1}{2}\)( giờ )
Nếu xe chạy với vận tốc 50km/h thì thioiwf gian xe chạy hết quãng đường AB là : \(\frac{x}{50}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{50}+\frac{2}{5}\)(giờ)
Vì thời gian dự định không đổi nên ta có phương trình :
\(\frac{x}{40}-\frac{1}{2}=\frac{x}{50}+\frac{2}{5}\)(1)
Giải phương trình (1) , ta có :
phương trình (1) \(\Leftrightarrow\frac{5x}{200}-\frac{100}{200}=\frac{4x}{200}+\frac{80}{200}\)
\(\Rightarrow5x-100=4x+80\)
\(\Rightarrow x=180\)\(\left(tm\right)\)
Vậy quãng đường AB dài 180km
Gọi độ dài quãng đường AB là \(x ( k m ) \)
ĐK: `x>0`
Thời gian dự định đi là \(t ( h ) , t > 0 \)
Thời gian đi với vận tốc `40km//h` là :`x/40` giờ
Vì đến muộn hơn `30` phút `=1/2` giờ , nên ta có :
\(\dfrac{x}{40}=t+\dfrac{1}{2}\rightarrow t=\dfrac{x}{40}-\dfrac{1}{2}\) giờ `(1)`
Thời gian đi với vận tốc `50km//h` là:`x/50` giờ
Vì đến sớm hơn `24` phút `=2/5` giờ , nên ta có:
\(\dfrac{x}{50}+\dfrac{2}{5}=t\left(2\right)\)
Từ `(1)` và `(2)` suy ra:
\(\dfrac{x}{40}+\dfrac{1}{2}=\dfrac{x}{50}+\dfrac{2}{5}\)
Giải phương trình ta được: \(x = 180\) (thỏa mãn)
Gọi quãng đường AB là x ( đk x > 0 )
Nếu xe chạy với vận tốc 40km/h thì thời gian xe chạy hết quãng đường AB là : \(\frac{x}{40}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{40}-\frac{1}{2}\)( h )
Nếu xe chạy với vận tốc 50km/h thì thioiwf gian xe chạy hết quãng đường AB là : \(\frac{x}{50}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{50}+\frac{2}{5}\)(h)
Vì thời gian dự định không đổi nên ta có phương trình :
\(\frac{x}{40}-\frac{1}{2}=\frac{x}{50}+\frac{2}{5}\)(1)
Giải phương trình (1) , ta có :
phương trình (1) \(\Leftrightarrow\frac{5x}{200}-\frac{100}{200}=\frac{4x}{200}+\frac{80}{200}\)
\(\Rightarrow5x-100=4x+80\)
\(\Rightarrow x=180\)\(\left(tm\right)\)
Vậy quãng đường AB dài 180km
Bài giải:
Gọi x (km) là độ dài quãng đường Ab, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa. Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
Thời gian đi từ A đến B với vận tốc 35km là = y + 2.
Thời gian đi từ A và B với vận tốc 50km là = y - 1.
Ta có hệ phương trình: ⇔
Giải ra ta được: x = 350, y = 8.
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 - 8 = 4 giờ.
gọi S là quãng đương AB, t là thời gian đi dự định. Theo đầu bài ta có pt:
(s/35) -2=(s/50)+1. Từ đó s=350km.
Thời gian dự định t=(s/35)-2 =350/35 -2 = 8 giờ
Thời điểm xuất phát là 4 giờ