K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCD có

N là trung điểm của AC

N là trung điểm của MD

Do đó:AMCD là hình bình hành

Suy ra: CD//AM và CD=AM

=>CD//MB và CD=MB

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

a) Ta có: \(AP=BP=\dfrac{AB}{2}\)(P là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AP=BP=AN=NC

Xét ΔABN và ΔACP có

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AP(cmt)

Do đó: ΔABN=ΔACP(c-g-c)

Suy ra: BN=CP(hai cạnh tương ứng)

b) Xét ΔMNC và ΔINA có 

MN=IN(gt)

\(\widehat{MNC}=\widehat{INA}\)(hai góc đối đỉnh)

NC=NA(N là trung điểm của AC)

Do đó: ΔMNC=ΔINA(c-g-c)

Suy ra: MC=IA(hai cạnh tương ứng)

Xét ΔANM và ΔCNI có 

AN=CN(N là trung điểm của AC)

\(\widehat{ANM}=\widehat{CNI}\)(hai góc đối đỉnh)

NM=NI(gt)

Do đó: ΔANM=ΔCNI(c-g-c)

Suy ra: AM=CI(hai cạnh tương ứng)

Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay \(\widehat{AMC}=90^0\)(1)

Xét ΔAMC và ΔCIA có 

AC chung

AM=CI(cmt)

MC=IA(cmt)

Do đó: ΔAMC=ΔCIA(c-c-c)

Suy ra: \(\widehat{AMC}=\widehat{CIA}\)(hai góc tương ứng)(2)

Từ (1) và (2) suy ra \(\widehat{AIC}=90^0\)

Vậy: \(\widehat{AIC}=90^0\)

16 tháng 2 2021

Thanks bạn nhiều lắm