K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 12 2020

ĐKXĐ: \(abc\ne0\)

\(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a+b+c=0\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

TH2: \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

4 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

5 tháng 12 2021

Cảm ơn bn.

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

31 tháng 3 2022

\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)

\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\)   \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)

" = " \(\Leftrightarrow a=b=c=1\)

 

31 tháng 3 2022

Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$

Ta chứng minh bất đẳng thức phụ sau: 

Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$

Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$

Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)

Do đó bất đẳng thức được chứng minh 

Dấu $"="$ xảy ra khi $x=1$

Trở lại bài toán: 

Áp dụng BĐT $(*)$ ta được:

$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$

Do $a^2+b^2+c^2=3$

Vậy $GTNN=9$

Dấu $"="$ xảy ra khi: $a=b=c=1$

 

 

NV
5 tháng 3 2021

Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)

\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)

Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)

\(\Leftrightarrow xy+yz\ge y^2+zx\)

\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)

Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)

Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)

Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)

Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)

\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)

\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)

\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

25 tháng 2 2022

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

25 tháng 2 2022

nó là 1 bài mà