tính nhanh C=2^100-2^99-2^98-2^97-...-2^2-2-1
giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{B}{A}=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{1+\left[\frac{1}{99}+1\right]+\left[\frac{2}{98}+1\right]+\left[\frac{3}{97}+1\right]+...+\left[\frac{98}{2}+1\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{100\cdot\left[\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right]}{\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}=100\)
Vậy : \(\frac{B}{A}=100\)
Ta có:
\(B=\frac{1}{99}+\frac{2}{98}+...+\frac{99}{1}\)
\(=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
\(=100.A\)
\(\Rightarrow\frac{B}{A}=100\)
1+2-3-4+5+6-7-8+..........+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+.........+(97+98-99-100)
=(-4)+(-4)+.....+(-4) (25 số -4)
=(-4)x25
=-100
a Ta có
B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100
= ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)
= 0 +0+... +0 (25 cs 0)
=0 x25=0
A=1-2+3-4+...+99-100 SSH=(100-1):1+1=100 Sh
=>A=(1-2)+(3-4)+....+(99-100)
vì chia thành cặp suy ra 100:2 =50 cặp
A=(-1)+(-1)+...(-1)
A=(-1).50
A=-50
ta có : \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-1^2\right)-\left(99^2-2^2\right)+\left(98^2-3^2\right)-...+\left(52^2-49^2\right)-\left(51^2-50^2\right)\)
\(=101\left(100-1\right)-101\left(99-2\right)+101\left(98-3\right)-...+101\left(52-49\right)-101\left(51-50\right)\)
\(=101.99-101.97+101.95-...+101.3-101.1\)
\(=101\left(99-97+95-93+...+3-1\right)\)
\(=101.\left(2+2+2+...+2\right)=101.2.25=5050\)
C = 2100 - 299 - 298 -...- 2 - 1
C = 2100 - (299 + 298 +...+ 2 + 1)
Đặt S = 299 + 298 +...+ 2 + 1
2S = 2100 + 299 +...+ 22 + 2
=> 2S - S = 2100 - 1
=> S = 2100 - 1
=> C = 2100 - (2100 - 1)
=> C = 2100 - 2100 + 1 = 1
Vậy C = 1
a) áp dụng hằng đẳng thức a^2 - b^2 = (a-b) .( a+b) ta có:
100^2 -99^2 + 98^2 - 97^2 +...........+2^2 -1^2
=(100-99).(100+99) + (98-97).( 98+97) +..........+ (2-1).(2+1)
=199 + 195 + ..................+ 3
= 25 . (199+3)
=5050