Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét t/g AHO và t/g BHO có:
góc HAO = góc HBO = 90 độ (gt)
góc AOH = góc BOH (gt)
OH chung
=> t/g AHO = t/g BHO (cạnh huyền góc nhọn)
b, Vì t/g AHO = t/g BHO (câu a) => OA = OB
Mà AC = BD
=> OC = OD
Xét t/g OAD và t/g OBC có:
OA = OB (cmt)
OD = OC (cmt)
góc O chung
=> t/g OAD = t/g OBC (c.g.c)
=> AD = BC
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a) xét 2 t/giác AHO và BHO có:
góc AHO=BHO=90 độ
OH cạnh chung
góc AOH=BOH (do OH nằm trên tia p/g Ot)
=> t/giác AHO=t/giác BHO (g.c.g)
(đpcm)