Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD
a) Xác định giao tuyến của 2 mp (SAB) và (SCD)
b) Gọi M là trung điểm của BC, mp (P) qua M và song song với 2 đường thẳng SA và CD. Xác định thiết diện của mp (P) với hình chóp đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′
Ta có: M = AI ∩ (SCD)
b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)
c) Đường thẳng qua I song song với SD cắt BD tại K.
Do nên OB < OD. Do đó điểm K thuộc đoạn OD.
Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.
Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N
Gọi L = NF ∩ SC
Ta có thiết diện là ngũ giác IREFL.
a/ \(\left\{{}\begin{matrix}S=\left(SAB\right)\cap\left(SCD\right)\\Sx//AB//CD\end{matrix}\right.\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\)
b/ \(\left(MCD\right)\cap\left(ABCD\right)=CD\)
\(\left(MCD\right)\cap\left(SBC\right)=MC\)
\(\left(MCD\right)\cap\left(SCD\right)=CD\)
\(\left(MCD\right)\cap\left(SAB\right)=My\left(My//AB//CD\right)\)
\(\Rightarrow TD:CDM\)
Vậy thiết diện là hình tam giác.
P/s: Chắc bạn sẽ thắc mắc tại sao lại ko xét trường hợp (MCD) cắt (SAD). Bởi vì chúng ko có giao tuyến :)
Kéo dài AB và CD cắt nhau tại E
\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)
Qua M kẻ đường thẳng d song song CD lần lượt cắt AC và AD tại F và G
Trong mp (SAC), qua F kẻ đường thẳng song song SA cắt SC tại P
Trong mp (SAD), qua G kẻ đường thẳng song song SA cắt SD tại Q
\(\Rightarrow\) Hình thang MPQG là thiết diện của (P) và chóp