K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 12 2020

Gọi \(D\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;1\right)\\\overrightarrow{AD}=\left(x-1;y+1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\\AD=\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\end{matrix}\right.\)

Do ABCD là hình vuông nên:

\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AD}=0\\AB=AD\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+y+1=0\\\left(x-1\right)^2+\left(y+1\right)^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2+4\left(x-1\right)^2=5\)

\(\Leftrightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}D\left(0;1\right)\\D\left(2;-3\right)\end{matrix}\right.\)

Với \(D\left(0;1\right)\Rightarrow\overrightarrow{DC}=\overrightarrow{AB}\Rightarrow C\left(2;2\right)\)

Cả 4 đáp án đều sai

23 tháng 8 2018

Gọi C= (x, y). Ta có  A B → = 2 ; 1 B C → = x − 3 ; y .

Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C  

⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2  hoặc x = 2 y = 2 .

Với C 1 4 ; − 2  ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.

Với C 2 2 ; 2  ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.

Chọn B.

12 tháng 5 2022

toi thich may bay

26 tháng 7 2018

29 tháng 11 2019

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng A. (SAC) vuông góc (SBD)      b. (SBD) vuông góc (ABCD) C.(BCD) vuông góc (ACD)D.(SAB) vuông góc (SAD) 3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp...
Đọc tiếp

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 

2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng 

A. (SAC) vuông góc (SBD)      

b. (SBD) vuông góc (ABCD) 

C.(BCD) vuông góc (ACD)

D.(SAB) vuông góc (SAD) 

3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp nào vuông góc với nhau 

A.(ABC) và (ABD)                  B.(ABD) và (BCD) 

C. (BCD) và (ACD)                  D.(ACD) và (ABC)

4. tứ diện abcd có bcd là tam giác vuông ở b . (ABC) vuông góc (BCD) . các cạnh của tứ diện cạnh nào là đường cao 

5. Cho hình chóp SABC có đáy abc là tam giác vuông ở b với AB=3a,BC=4a. biết SA vuông góc với đáy , góc giữa (SBC) và (ABC)=60 ĐỘ . TÍNH diện tích tam giác sbc

0
1 tháng 3 2018

Giải bài 6 trang 46 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 46 sgk Hình học 10 | Để học tốt Toán 10

⇒ ABCD là hình bình hành.

Giải bài 6 trang 46 sgk Hình học 10 | Để học tốt Toán 10

⇒ hình bình hành ABCD là hình chữ nhật.

Giải bài 6 trang 46 sgk Hình học 10 | Để học tốt Toán 10

⇒ AB = AD ⇒ Hình chữ nhật ABCD là hình vuông (ĐPCM).