K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

Áp dụng định lý Py ta go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{3,6^2+4,8^2}=6\left(cm\right)\)

Ta có:

\(AH=\dfrac{AB.AC}{BC}=\dfrac{3,6.4,8}{6}=2,88\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{3,6^2-2,88^2}=2,16\left(cm\right)\)

Lại có: 

\(sinC=\dfrac{AH}{AC}=\dfrac{2,88}{4,8}=0,6\Rightarrow\widehat{C}\approx36,87\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

10 tháng 1 2022

??

BC=10cm

AH=4,8cm

BH=3,6cm

19 tháng 11 2021
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

a: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)

CH=16(cm)

BC=25(cm)

AC=20(cm)

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)