Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Xét \(\Delta ACE\) và \(\Delta DCE\) có:
CA=CD(gt)
\(\widehat{ACE}\) =\(\widehat{DCE}\) (vì CE là tia phân giác của \(\widehat{ACD}\) )
CE là cạnh chung
\(\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\)
\(\Rightarrow\widehat{CAE}\) = \(\widehat{CDE}\) (2 góc tương ứng bằng nhau)
Mà \(\widehat{CAE}\) =90o \(\Rightarrow\widehat{CDE}\) =90o
Ta lại có: \(\widehat{CDE}\) + \(\widehat{EDB}\) =180o
\(\Rightarrow\widehat{EDB}\) =180o -\(\widehat{CDE}\) =180o -90o=90o
Mặt khác: \(\Delta ABC\) vuông tại A có \(\widehat{B}\) + \(\widehat{C}\) =90o (2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{C}\) =90o - \(\widehat{B}\) (1)
\(\Delta EDB\) vuông tại D(\(\widehat{EDB}\) =90o) có \(\widehat{BED}\) + \(\widehat{B}\) =90o(2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{BED}\) =90o-\(\widehat{B}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}\) = \(\widehat{BED}\) hay \(\widehat{ACB}\) =\(\widehat{BED}\)
Xét tam giác ABC và tam giác DEC có
CB=CE(gt)
góc BCA = góc ECD ( đđ )
CA=CD (gt)
=> tam giác ABC = tam giác DEC (cgc)
=> góc CDE = góc CAB
b) ta có tam giác ABC = tam giác DEC (cmt)
=> AD=DC=3(cm) (cctư)
góc ABC= góc DEC = 40o
a: Xét tứ giác AEDB có
C là trung điểm của AD
C là trung điểm của EB
Do đó: AEDB là hình bình hành
Suy ra: AB//DE
=>DE\(\perp\)AC
hay \(\widehat{CDE}=90^0\)
b: DC=AC=3(cm)
\(\widehat{DEC}=\widehat{ABC}=40^0\)