K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 12 2020

Gọi E là giao điểm của AC và BD \(\Rightarrow\left\{{}\begin{matrix}E\in\left(SAC\right)\\E\in\left(SBD\right)\end{matrix}\right.\)

\(\Rightarrow SE=\left(SAC\right)\cap\left(SBD\right)\)

Kéo dài AD và BC cắt nhau tại F

\(\Rightarrow SF=\left(SAD\right)\cap\left(SBC\right)\)

b.

Chắc là trung điểm của SC và SD?

M và trung điểm SC, N là trung điểm SD

\(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN//CD\) , mà \(CD//AB\Rightarrow MN//AB\Rightarrow MN//\left(SAB\right)\)

19 tháng 12 2020

Cảm ơn bạn

NV
19 tháng 12 2020

Gọi E là giao điểm của AC và BD thì \(SE=\left(SAC\right)\cap\left(SBD\right)\)

19 tháng 12 2020

Bạn vẻ hình đc không ạ

15 tháng 12 2021

15 tháng 12 2021

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

NV
21 tháng 12 2022

a.

Trong mp (ABCD), kéo dài AD và BC cắt nhau tại E

\(\left\{{}\begin{matrix}E\in AD\in\left(SAD\right)\\E\in BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(SAD\right)\cap\left(SBC\right)\)

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

b.

Gọi O là giao điểm AC và BD \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Trong mp (SBD), nối DM cắt SO tại I

\(\left\{{}\begin{matrix}I\in SO\in\left(SAC\right)\\I\in DM\end{matrix}\right.\)

\(\Rightarrow I=DM\cap\left(SAC\right)\)

c.

Gọi F là trung điểm SA \(\Rightarrow FM\) là đường trung bình tam giác SAB

\(\Rightarrow FM||AB\Rightarrow FM||CD\)

Mà \(M\in\left(MCD\right)\Rightarrow F\in\left(MCD\right)\)

\(\Rightarrow\) Tứ giác CDFM là thiết diện của (MCD) và chóp

NV
21 tháng 12 2022

loading...

19 tháng 6 2021

a, Gọi \(I=AC\cap BD\)

Mà \(AC\in\left(SAC\right);BD\in\left(SBD\right)\)

\(\Rightarrow I=\left(SAC\right)\cap\left(SBD\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SI\) là giao tuyến cần tìm.

b, Gọi \(K=AC\cap BM\)

Mà \(AC\in\left(SAC\right);BM\in\left(SBM\right)\)

\(\Rightarrow K=\left(SAC\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBM\right)\Rightarrow SK\) là giao tuyến cần tìm.

19 tháng 6 2021

c, Gọi \(N=AD\cap BM\)

Mà \(AD\in\left(SAD\right);BM\in\left(SBM\right)\)

\(\Rightarrow N=\left(SAD\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAD\right)\cap\left(SBM\right)\Rightarrow SN\) là giao tuyến cần tìm.

d, Gọi \(T=AM\cap BC\)

Mà \(AM\in\left(SAM\right);BC\in\left(BMC\right)\)

\(\Rightarrow T=\left(SAM\right)\cap\left(SBC\right)\)

Lại có \(S=\left(SAM\right)\cap\left(SBC\right)\Rightarrow ST\) là giao tuyến cần tìm.