Tìm tất cả các số nguyên tố thỏa mãn sa cho p2+14 cũng là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc < ab+bc+ca
\(\Rightarrow\frac{ab+bc+ca}{abc}>\frac{abc}{abc}\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}>1\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)
Vì a,b,c có vai trò như nhau . Nếu giả sử a>b>c
\(\Rightarrow\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\Rightarrow1< \frac{1}{c}+\frac{1}{a}+\frac{1}{b}< \frac{3}{c}\)
\(\Rightarrow1< \frac{3}{c}\)
\(\Rightarrow c>3\) mà c là SNT \(\Rightarrow c=2\left(1\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}>1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow b>2\). Giả sử b > 3
\(\frac{1}{b}< \frac{1}{3}\left(2\right)\)mà \(\frac{1}{a}< \frac{1}{b}\)
\(\Rightarrow\frac{1}{a}< \frac{1}{3}\)
Kết hợp (2) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)mà \(\frac{2}{3}>\frac{1}{2}\)
\(\Rightarrow\) giả sử sai
\(\Rightarrow b< 3\)mà \(b\ne c\Rightarrow b\ne2\)và b là SNT
\(\Rightarrow b=3\left(3\right)\)
\(\Rightarrow\frac{1}{a}>\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow a< 6\)mà \(a>b;b=3;b\ne a\)
\(\Rightarrow3< a< 6\)mà a là SNT
\(\Rightarrow a=5\left(4\right)\)
Mà a,b,c vai trò như nhau
Kết hợp (1) , (3) , (4) \(\Rightarrow\left(a,b,c\right)\in\left\{\left(2,3,5\right);\left(5,3,2\right);\left(3,2,5\right);\left(5,2,3\right);\left(2,5,3\right);\left(3,5,2\right)\right\}\)( tm điều kiện )
Mn tham khảo nhé
Số nguyên tố p ko thể là 2 vì ko có 2 số nguyên tố nào có tổng là2
=> p là số lẻ
Mà p là tổng 2 số nt và cũng là hiêu 2 số nt
Do đó: p=a+2 p=b-2[a;b thuộc P]
TA thấy p-2 ;p; p+2 là 3 số lẻ liên tiếp nên 1 trong 3 số luôn chia hết cho 3
Mà cả 3 số này đều là số nguyên tố nên 1 trong 3 số là số 3
Nếu a=3 thì p=5;b=7[chọn]
Nếu b=3 thì p=1[loại]
Nếu p=3 thì a=1[loại]
Vậy số nguyên tố p cần tìm là 5
mà cả 3 số đều là số nguyên tố nên 1 trong 3 số là sô 3
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
b, Nếu p= 2 thì p+2= 2+2=4 chia hết cho 2 →là hợp số ( loại )
Nếu p= 3 thì p+6= 3+6=9 chia hết cho 3 →là hợp số ( loại )
Nếu p= 4 thì p+18= 4+18=22 chia hết cho 22 →là hợp số ( loại )
Nếu p=5 thì \(\left[\begin{array}{nghiempt}p+2=5+2=7\\p+6=5+6=11\\p+18=5+18=23\end{array}\right.\) ↔ Là số nguyên tố
Vì p có 2 giá trị cần tìm nên ta tiếp tục tìm kiếm nha bn
Nếu p=6 thì p+2= 6+2 =8 chia hết cho 2 →là hợp số ( loại )
Nếu p=7 thì p+2=7+2=9 chia hết cho 3 →là hợp số ( loại )
Nếu p=8 thì p+2= 8+2=10 chia hết cho2 →là hợp số ( loại )
Nếu p=9 thì p+6=9+6=15 chia hết cho 5 →là hợp số ( loại )
Nếu p=10thì p+6=10+6=16 chia hết cho 2 →là hợp số ( loại )
Nếu p=11 thì \(\left[\begin{array}{nghiempt}p+2=11+2=13\\p+6=11+6=17\\p+18=11+18=29\end{array}\right.\) → là SNT
Vậy có 2 giá trị p= 5 và p= 11
+ Nếu p=2 thì p+10 = 2+10 = 12 chia hết cho 2 →là hợp số (loại)
+ Nếu p=3 thì p+10= 3+ 10 =13 → là số nguyên tố
......................p+14 = 3+14=17 → là số nguyên tố
** Nếu p > 3 thì p sẽ có dạng 3k + 1 và 3k+2
* Nếu p= 3k+1 thì p+14= 3k+1+14=3k+15 chia hết cho 3→là hợp số (loại)
Nếu p= 3k+2 thì p+10= 3k+2+10=3k+12 chia hết cho 3 →là hợp số (loại)
Vậy có 1 và chỉ cí 1 giá trị p=3
các số nguyên tố b thỏa mãn là : 3