K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

 a)tam.... giác ABM và tam giác ACM có:

 AB=AC(GT)

cạnh AM chung

AM=BM(M là trung điểm)

=>tg ABM=TG ACM(C-C-C)

b)Xét tg AMC và tg EMB có

 BME=AMC(Đối đỉnh)

 BM=MC(M là trung điểm)

ME=MA(GT)

=>tg AMC=tg EMB(C-G-C)

=> MBE=ACM(2 góc tương ứng)

Mà 2 góc nằm đúng vị trí sole trong

=> AC//BE

c)

a: Xét ΔABM và ΔACM có

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên  AM là đường cao

c: Xét tứ giác ABDC có 

M là trung điểm của BC

M la trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

9 tháng 1 2022

Cảm ơn bạn nhìu nha yeu

 

27 tháng 12 2021

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

1: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)

MC=MB

Do đó: ΔMAC=ΔMEB

2: Ta có: ΔMAC=ΔMEB

nên AC=EB

13 tháng 5 2022

còn câu chứng minh EH < MA làm sao ạ 🥲