Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Ta có: ΔABC\(\sim\)ΔHAC
nên AC/HC=BC/AC
hay \(AC^2=BC\cdot HC\)
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
a, Xét Δ ABC và Δ HAC, có :
\(\widehat{ACB}=\widehat{HCA}\) (góc chung)
\(\widehat{BAC}=\widehat{AHC}=90^o\)
=> Δ ABC ∾ Δ HAC (g.g)
b, Ta có : Δ ABC ∾ Δ HAC (cmt)
=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=> \(AC^2=BC.HC\)
c, Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \Leftrightarrow S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot4\cdot3=6\left(cm^2\right)\)
a) Xét \(\Delta ACE\) và \(\Delta DCE\) có :
- CE chung
\(CD=CA\)
\(\Rightarrow\Delta ACE=\Delta DCE\)
\(\Rightarrow EA=ED\)
b) \(\Delta ACE=\Delta DCE\Rightarrow EDC=EAC=90^0\Rightarrow DEB+EBD=90^0\)
Mà \(BCA+EBD=90^o\Rightarrow BED=BCA\)
Tự vẽ hình
a, xét tam giác ACE và tam giác DCE có
CD = CA ( gt)
góc DCE = góc ACE ( CE là tia phân giác)
CE chung
=>tam giác ACE = tam giác DCE ( c-g-c)
=> EA = ED, góc CDE = góc CAE (=90 độ)
b, Xét tam giác BDE vuông tại E ( vì góc CDE = 90 độ kề bù vs góc EDB nên góc EDB cx = 90 độ)
Góc DBE + góc DEB = 90 độ ( hai góc phụ nhau) (1)
Xét tam giác ABC vuông tại A ( gt)
=> góc ABC + góc ACB 90 độ ( hai góc phụ nhau) ( 2)
Từ (1) và (2) => góc BED = góc ACB ( cùng phụ vs góc EBD)