K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Áp dụng BĐT dạng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

A = \(\left|x-1\right|+\left|x+2012\right|=\left|1-x\right|+\left|x+2012\right|\ge\left|1-x+x+2012\right|\)

\(\Leftrightarrow A\ge2013\)

Vậy GTNN của \(A=2013\)

Giastrij này đạt tại \(\left(1-x\right)\left(x+2012\right)\ge0\Leftrightarrow-2012\le x\le1\)

17 tháng 11 2019

\(A=\left|x-1\right|+\left|x+2012\right|\)

\(A=\left|1-x\right|+\left|x+2012\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A\ge\left|1-x+x+2013\right|=2013\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(1-x\right)\left(x+2012\right)=0\)

\(\Leftrightarrow-2012\le x\le1\)

Vậy Min A= 2013 \(\Leftrightarrow-2012\le x\le1\)

14 tháng 1 2018

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)

Vậy MinC = 2500 khi 50 =< x =< 56

14 tháng 1 2018

a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1

Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)

Vậy MinA = 1 khi 2011 =< x =< 2012

b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011| 

Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)

Mà \(\left|x-2011\right|\ge0\forall x\)

\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)

Vậy MinB = 2 khi x = 2011

Câu c để nghĩ 

1 tháng 12 2018

\(A=\frac{-2018}{x^2-10x+2012}\)

ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)

dấu = xảy ra khi x-5=0

=> x=5

vì tử thức âm  mà mẫu thức luôn lớn hơn 0

=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất

khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5

ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)

Ta có:

\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)

\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)

\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)

\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)

\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)

\(=\left|-1+45\right|=\left|44\right|=44\)

Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)

\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)

\(\Leftrightarrow1\le x-2013\le2025\)

\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)

29 tháng 10 2020

A = | x - 1 | + | x + 2012 |

= | 1 - x | + | x + 2012 |

≥ | 1 - x + x + 2012 | = 2013

Dấu "=" xảy ra khi ab ≥ 0

=> ( 1 - x )( x + 2012 ) ≥ 0

=> -2012 ≤ x ≤ 1

=> MinA = 2013 <=> -2012 ≤ x ≤ 1

29 tháng 10 2020

A=[x-1]+[x+2012] lớn hơn hoặc bằng x-1

Vậy x = 1

28 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)

\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)

\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)