cho đoạn thẳng AB , trên cùng một nửa mặt phẳng bờ AB vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax , By . Qua điểm M thuộc nửa đường tròn này ( M khác A, B) vẽ tiếp tuyến Ax , By theo thứ tự tại E và F , VẼ mh VUÔNG GÓC VỚI aB TẠI H . gọi N là giao điểm của các tia BM và Ax , gọi G là giao điểm thứ 2 của À với nửa đường tròn O . chứng minh NG là tiếp tuyến của đường tròn O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất tiếp tuyến, ta có:
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Suy ra tứ giác ABDC là hình thang
Gọi I là trung điểm của CD
Khi đó OI là đường trung bình của hình thang ABDC
Suy ra: OI // AC ⇒ OI ⊥ AB
Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)
Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Trong tam giác BND, ta có AC // BD
Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét) (1)
Theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = CM và BD = DM (2)
Từ (1) và (2) suy ra: ND/NA = MD/MC
Trong tam giác ACD, ta có: ND/NA = MD/MC
Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)
Mà: AC ⊥ AB (vì Ax ⊥ AB)
Suy ra: MN ⊥ AB
Trong tam giác ACD, ta có: MN // AC
Suy ra: MN/AC = DN/DA (hệ quả định lí Ta-lét) (3)
Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)
Suy ra: HN/AC = BN/BC (hệ quả định lí Ta-lét) (4)
Trong tam giác BDN, ta có: AC // BD
Suy ra: ND/NA = BN/NC (hệ quả định lí Ta-lét)
⇒ ND/(DN + NA) = BN/(BN + NC) ⇔ ND/DA = BN/BC (5)
Từ (3), (4) và (5) suy ra: MN/AC = HN/AC ⇒ MN = HN
Bạn có thể tham khảo bài tương tự ở đây:
BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24
CM góc COD = 90 độ
Theo tính chất 2 tiếp tuyến cắt nhau
Ta có : OC là phân giác góc AOM
=> góc COM = 1/2 góc AOM
OD là phân giác góc BOM
=> góc DOM = 1/2 góc BOM
=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân
a: Xét tứ giác PAOM có
góc PAO+góc PMO=180 độ
=>PAOM là tứ giác nội tiếp
b: Xét (O) có
PA,PM là tiếp tuyến
nên PA=PM và OP là phân giác của góc MOA(1)
mà OA=OM
nên OP là trung trực của AM
=>OP vuông góc AM
Xét (O) có
QM,QB là tiếp tuyến
nên QM=QB và OQ là phân giác của góc MOB(2)
mà OM=OB
nên OQ là trung trực của MB
=>OQ vuông góc MB tại K
Từ (1), (2) suy ra góc POQ=1/2*180=90 độ
Xét tứ giác MIOK có
góc MIO=góc MKO=góc IOK=90 độ
=>MIOK là hình chữ nhật
Xét ΔOPQ vuông tại O có OM là đường cao
nên MP*MQ=OM^2=R^2
=>AP*QB=OM^2=R^2 ko đổi