cho tam giác abc có AB =AC . Am là tia phân giác góc A ( M thuộc canh BC ) . Lấy điểm D thuoọc đoạn AM . (Điểm D khác A và M ) chứng minh
a, DB=
b, DM là tia phân giác goc BDC, DBC= DCB
c, BDC > BAC
ai làm nhanh mik tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔABE và ΔADE có:
AE là cạnh chung
\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ ΔABE=ΔADE(c-g-c)
b)gọi I là giao điểm của AE và BD ta được:
xét ΔADI và ΔABI có:
AI là cạnh chung
\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))
AD=AB(gt)
⇒ΔADI=ΔABI(c-g-c)
⇒.ID=IB(2 cạnh tương ứng)(1)
.\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)
Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)
Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)
Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)
c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB
Mà DE=BE
⇒DE<EF(đ.p.cm)
d)ta có:
vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)
xét ΔCDE và ΔFBE có:
\(\widehat{EBF}=\widehat{EDC}=90^o\)
\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)
ED=EB( ΔABE=ΔADE)
⇒ ΔCDE=ΔFBE(g-c-g)
⇒CE=EF(2 cạnh tương ứng)
⇒ΔCEF cân tại E
⇒\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)
vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)
⇒ΔEDB cân tại E
⇒\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)
Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)
⇒\(\widehat{CFE}=\widehat{BDE}\)
⇒CF//BD
Mà AG⊥BD
⇒AG⊥CF(đ.p.cm)
a: Xét ΔABH và ΔMBH có
BA=BM
\(\widehat{ABH}=\widehat{MBH}\)
BH chung
Do đó: ΔABH=ΔMBH
b: Xét ΔBAD và ΔBMD có
BA=BM
\(\widehat{ABD}=\widehat{MBD}\)
BD chung
Do đó: ΔBAD=ΔBMD
Suy ra: \(\widehat{ADB}=\widehat{MDB}\)
hay DB là tia phân giác của \(\widehat{ADM}\)
a: Xét ΔABH và ΔMBH có
BA=BM
góc ABH=góc MBH
BH chung
=>ΔBAH=ΔBMH
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
=>góc ADB=góc MDB
=>DB là phân giác của góc ADM
c: Xét ΔADK vuông tại A và ΔMDC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔADK=ΔMDC
=>AK=MC
a: Xét ΔABH và ΔMBH có
BA=BM
góc ABH=góc MBH
BH chung
=>ΔBAH=ΔBMH
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
=>góc ADB=góc MDB
=>DB là phân giác của góc ADM
c: Xét ΔADK vuông tại A và ΔMDC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔADK=ΔMDC
=>AK=MC
Xét tam giác DMB và tam giác DMC có:
góc DMB=góc DMC(=90 độ)
DM là cạnh chung
BM=MC(Am là tia phân giác của AB)
\(\Rightarrow\)tam giác DMB=tam giác DMC(c.g.c)
\(\Rightarrow\)DB=DC(2canhj tương ứng)
câu b và câu c bạn làm tiếp nhá!