K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2020

Sửa câu b: Từ M kẻ ME

Bg

a/ Xét hai tam giác AMB và AMC có:

AB = AC (gt)

BM = MC (vì M là trung điểm của BC)

AM là cạnh chung

Nên \(\Delta AMB=\Delta AMC\)(c.c.c)

Vậy \(\Delta AMB=\Delta AMC\)

b/ Xét hai tam giác vuông AME và AMF có:

\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))

AM là cạnh chung

Nên \(\Delta AME=\Delta AMF\)(g.c.g)

Do đó AE = AF (hai cạnh tương ứng)

Vậy AE = AF

c và d hơi dài. Đợi một thời gian :((

16 tháng 12 2020

một thời gian là bao lâu vậy bạn ?

23 tháng 12 2020

a) Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay \(\widehat{EAM}=\widehat{FAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có 

AM chung

\(\widehat{EAM}=\widehat{FAM}\)(cmt)

Do đó: ΔAEM=ΔAFM(cạnh huyền-góc nhọn)

⇒AE=AF(hai cạnh tương ứng)

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)

Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(Định nghĩa tam giác cân)

\(\widehat{AEF}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAEF cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{B}=\widehat{AEF}\)

mà \(\widehat{B}\) và \(\widehat{AEF}\) là hai góc ở vị trí đồng vị

nên EF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

23 tháng 12 2020

có gì đó sai sai ở đây từ M mà kẻ AE vuông góc với AB là sao

 

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

23 tháng 12 2020

đề sai rồi

23 tháng 12 2020

đề sai rồi