Từ một điểm A ở ngoài đường tròn (O:R) vẽ hai tiếp tuyến AB, AC của đường tròn ( B, C là hai tiếp điểm ).Gọi H là giao điểm của OA và BC a) CM: A, B, O, C cùng thuộc một đường tròn và OA ┴ BC b) Kẻ đường kính CD của đường tròn (O), AD cắt (O) tại E. CM: CE ┴ AD và DA. DE = 4OA . OH c) Kẻ OK ┴ DE tại K, AD cắt BC tại F. Biết R = 6cm và OA bằng 6 căn 5. Tính KF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm
\(\Rightarrow AO\perp BC\) (đpcm)
\(\Rightarrow BH=CH=\dfrac{BC}{2}\)
b/
Ta có
B và C cùng nhìn AO dưới 1 góc vuông nên B và C cùng nằm trên đường tròn đường kính AO => A; O; B; C cùng nằm trên 1 đường tròn
c/
Ta có sđ cung IB = sđ cung IC ( Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì chia đôi cung chắn bởi hai tiếp điểm)
Xét tg vuông IBK và tg vuông IBH có
\(sđ\widehat{IBK}=\dfrac{1}{2}sđ\) cung IB (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{IBH}=\dfrac{1}{2}sđ\) cung IC (góc nội tiếp đường tròn)
Mà sđ cung IB = sđ cung IC (cmt)
\(\Rightarrow\widehat{IBK}=\widehat{IBH}\)
cạnh huyền IB chung
\(\Rightarrow\Delta IBK=\Delta IBH\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow IK=IH\) (đpcm)
d/ Mình nghĩ mãi chỉ có 1 cách nhưng hơi dài mình nói cách làm thôi nhé
Vận dụng các hệ thức lượng trong tg vuông và t/c của hai tiếp tuyến cùng xp từ 1 điểm Sẽ tính được AB=AC;BC; AH từ đó tính được diện tích tg ABC
Vận dụng công thức \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin\widehat{KAE}\) từ đó tính được \(\sin\widehat{KAE}\)
Tương tự ta cũng tính được \(\sin\widehat{AKE}\)
Vận dụng định lý hàm sin
\(\dfrac{KE}{\sin\widehat{KAE}}=\dfrac{AE}{\sin\widehat{AKE}}\Rightarrow\dfrac{KM+EM}{\sin\widehat{KAE}}=\dfrac{AC+EC}{\sin\widehat{AKE}}\)
Mà KM=KB (hai tiếp tuyến cùng xp từ 1 điểm)
tg IBK = tg IBH (cmt) => KB=BH
=> KB=KM=BH Mà BH tính được AC tính được; EM=EC (2 tiếp tuyến cùng xp từ 1 điểm)
Giải PT để tìm EC Từ đó tính được AK; KE; AE
\(\Rightarrow S_{AKE}=\dfrac{1}{2}\left(AK+KE+AE\right).R\)
Bạn tự làm nhé
a ) Ta có : AB , AC là tiếp tuyến của (O)
nội tiếp
b ) Vì AB là tiếp tuyến của (O)
c ) Ta có :
a) Gọi M là trung điểm của OA
Ta có: ΔOBA vuông tại B(OB⊥BA)
mà BM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)
nên \(BM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔOCA vuông tại C(OC⊥CA)
mà CM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)
nên \(CM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: M là trung điểm của OA(gt)
nên \(OM=AM=\dfrac{OA}{2}\)(3)
Từ (1), (2) và (3) suy ra MA=MB=MO=MC
hay A,B,O,C cùng thuộc một đường tròn(đpcm)
b) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
⇔OA⊥BC
mà OA cắt BC tại H(gt)
nên OA⊥BC tại H(đpcm)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC