Rút gọn các phân thức: \(\dfrac{\left(x-y\right)^3-3xy.\left(x+y\right)+y^3}{x-6y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
a) \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
= \(\dfrac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)
= \(\dfrac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)
=\(\dfrac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2-x-3\right)}\)
= \(\dfrac{3x^2-3x-x+1}{2x^2+2x-3x-3}\)
= \(\dfrac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x+1\right)-3\left(x+1\right)}\)
= \(\dfrac{\left(x-1\right)\left(3x-1\right)}{\left(x+1\right)\left(2x-3\right)}\)
Mình không chắc là đúng hoàn toàn nha!
b) \(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
= \(\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)
= \(\dfrac{x^3-6x^2y}{x-6y}\)
= \(\dfrac{x^2\left(x-6y\right)}{x-6y}\)
= \(x^2\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
b) Ta có nhận xét này nếu a+b+c=0 thì\(a^3+b^3+c^3=3abc\) (nếu cần chứng minh thì hỏi sau nhé)
Khi đó: tử=(x-y)(y-z)(z-x)
Mẫu nó cứ thế nào ấy. Rút gọn cũng chỉ được một chút thôi, chẳng gọn lắm
a) chịu chưa nghĩ ra
\(A=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\\ A=\dfrac{2\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{2\left(-\dfrac{3}{2}\right)}{\dfrac{5}{2}}=\left(-3\right)\cdot\dfrac{2}{5}=-\dfrac{6}{5}\)
\(B=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}=\dfrac{-5}{-5+10}=\dfrac{-5}{5}=-1\)
\(a,\dfrac{21x^2y^3}{24x^3y^2}=\dfrac{7y}{8x}\)
\(b,\dfrac{15xy^3\left(x^2-y^2\right)}{20x^2y\left(x+y\right)^2}=\dfrac{15xy^3\left(x-y\right)\left(x+y\right)}{20x^2y\left(x+y\right)^2}=\dfrac{3y^2\left(x-y\right)}{4x\left(x+y\right)}=\dfrac{3xy^2-3y^3}{4x^2+4xy}\)
a) Ta có: \(\dfrac{21x^2y^3}{24x^3y^2}\)
\(=\dfrac{21x^2y^3:3x^2y^2}{24x^3y^2:3x^2y^2}\)
\(=\dfrac{7y}{8x}\)