Cho \(A=\frac{2n+9}{n-3}\)(n \(\varepsilon\) z ;n + 3)
a) Tìm n để A có giá trị là số nguyên.
b) Tìm n \(\varepsilon\) z để A có giá trị lớn nhất.
Tìm giá trị lớn nhất đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sorry mọi người nha, mình lỡ bấm sang \(\varepsilon\). Nó là \(\in\)đó các bạn
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)
Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3
=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6
Ta có:
n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)
Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3
=> n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.
Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.
K biết đúng hay sai nghe
Để M là số nguyên <=> 2n+3 chia hết cho 2n+1
=> (2n+3)-(2n+1)chia hết cho 2n+1
=>2n+3-2n-1 chia hết cho 2n+1
=>2 chia hết cho 2n+1
=>2n+1\(\in\)Ư(2)={1;-1;2;-2}
2n+1 | 1 | -1 | 2 | -2 |
2n | 0 | -2 | 1 | -3 |
n | 0\(\in\)Z | -1\(\in\)Z | 0,5\(\notin\)Z | -1,5\(\notin\)Z |
Vậy n\(\in\){0;-1}