cho x, y là các số nguyên dương sao cho A= x4+ y4/15 là số nguyên dương. cmr x, y chia hết cho 3, 5. từ đó tìm giá trị nhỏ nhất của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
+) Vì y và x tỉ lệ thuận với nhau nên:
y=kxy=kx
\Rightarrow y_1=k\cdot x_1⇒y1=k⋅x1
hay 6=k\cdot36=k⋅3
\Rightarrow k=2⇒k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.