K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$

 

30 tháng 4 2021

Ta có: \(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{y}}{x+\sqrt{xy}}\)

\(=\dfrac{\sqrt{y}\left(x+\sqrt{xy}\right)+\sqrt{y}\left(x-\sqrt{xy}\right)}{x^2-xy}\)

\(=\dfrac{\sqrt{y}\left(x+\sqrt{xy}+x-\sqrt{xy}\right)}{x\left(x-y\right)}=\dfrac{2x\sqrt{y}}{x\left(x-y\right)}\)

\(=\dfrac{2\sqrt{y}}{x-y}=\dfrac{2\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{x}+\sqrt{y}-1}{x+\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{2\sqrt{xy}}.\dfrac{2\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{\sqrt{x}+\sqrt{y}-1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{\sqrt{x}+\sqrt{y}-1+1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}}{x}\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+2xy+y}{1-xy}\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+2xy+y}{1-xy}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\cdot\dfrac{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}{x+xy+y+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

5 tháng 7 2021

Đk:\(xy\ne1;x\ge0;y\ge0\)

 \(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+y+2xy}{1-xy}\)

\(=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1+x+y+xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{\left(1+x\right)\left(1+y\right)}{1-xy}\)\(=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+x\right)\left(1+y\right)}=\dfrac{2\sqrt{x}}{1+x}\)

b) Áp dụng AM-GM có:

\(1+x\ge2\sqrt{x}\Leftrightarrow\)\(\dfrac{2\sqrt{x}}{1+x}\le1\)

Dấu "=" xảy ra khi x=1 (tm)

Vậy \(P_{max}=1\)