K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)

\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)

\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

12 tháng 12 2020

cm bn

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

NV
20 tháng 8 2021

\(A=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(x^2-4x+4\right)-3\)

\(A=\left(x-2y+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right)\)

28 tháng 10 2017

a, \(x^4+2x^2+1-x^2\)

\(\left(x^2+1\right)^2-x^2\)

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\)

b, \(x^4+x^2+1\)

\(x^4+2x^2+1-x^2\)

= .. ( như phần a )

c, \(y^4+64\)

\(\left(y^2+8\right)\left(y^2-8\right)\)

d, \(4xy+3z-12y-xz\)

\(=4y\left(x-3\right)-z\left(x-3\right)\)

\(=\left(x-3\right)\left(4y-z\right)\)

e, \(x^2-4xy+4y^2-z^2+6z-9\)

\(=\left(x-2y\right)^2-\left(z-3\right)^2\)

g, \(x^2-4xy+5x+4y^2-10y\)

\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)

\(=\left(x-2y\right)^2+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+5\right)\)

h, \(x^2-7x+6\)

\(=x^2-6x-x+6\)

\(=x\left(x-6\right)-\left(x-6\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

i, \(x^3+5x^2+6x+2\)

\(=x^3+x^2+4x^2+4x+2x+2\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+2\right)\)

28 tháng 10 2017

phần b là 6^4 nhé

8 tháng 12 2019

Bài làm

a) xy + y2 - x - y

= ( xy + y2 ) - ( x + y )

= y( x + y ) - ( x + y )

= ( x + y )( y - 1 )


b) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 25 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

c) xy + xz - 2y - 2z

= ( xy + xz ) - ( 2y + 2z )

= x( y + z ) - 2( y + z )

= ( y + z )( x - 2 )


d) x2 - 6xy + 9y2 - 25z2

= ( x2 - 6xy + 9y2 ) - 25z2

= ( x - 3y )2 - 25z2

= ( x - 3y - 5z )( z - 3y + 5z )


e) 3x2 - 3y2 - 12x + 12y

= 3( x - y )( x + y ) - 12( x - y )

= ( x - y )[ 3( x + y ) - 12 ]

f) 4x3 + 4xy2 + 8x2y - 16x

= 4x( x2 + y2 + 2xy - 4 )

= 4x[ ( x + y)2 - 4 ]

= 4x( x + y - 2 )( x + y + 2 )


g) x2 - 5x + 4

= x2 - x - 4x + 4

= x( x - 1 ) - 4( x - 1 )

= ( x - 1 )( x - 4 )


h) x4 + 5x2 + 4

= x4 + x2 + 4x2 + 4

= x2( x2 + 1 ) + 4( x2 + 1 )

= ( x2 + 1 )( x2 + 4 )


i) 2x2 + 3x - 5

= 2x2 - 5x + 2x - 5

= 2x( x + 1 ) - 5( x + 1 )

= ( x + 1 )( 2x - 5 )


k) x3 - 2x2 + 6x - 5 ( không biết làm )
l) x2 - 4x + 3

= ( x2 - 4x + 4 ) - 1

= ( x - 2 )2 - 1

= ( x - 3 )( x - 1 )

# Học tốt #

18 tháng 10 2021
Jed7eyeywyeueu3uêuue
18 tháng 10 2021

nhìn đề bài rắc rối thế

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)