*Cộng các phân thức sau:a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x+1}+1\)
\(=\frac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^3-x^2-2x+x-1-x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^3-2x^2-x-2}{\left(x-1\right)\left(x+1\right)}\)
a. \(y'=\dfrac{-1}{\left(x-1\right)}\)
b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)
c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)
d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)
e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)
g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)
2.
a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)
b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)
c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)
d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)
e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)
f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)
a, \(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}=\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(y-x\right)}\)
\(=\frac{x^2}{xy\left(x-y\right)}-\frac{2xy-y^2}{xy\left(x-y\right)}=\frac{\left(x-y\right)^2}{xy\left(x-y\right)}=\frac{x-y}{xy}\)
b, \(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x^2}{x^2-1}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1+x+1+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2x}{x-1}\)
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{\left(2x+y\right)\left(2x+y\right)-8yx+\left(2x-y\right)\left(2x-y\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
b) \(\dfrac{1}{x^2+3x+2}+\dfrac{2x}{x^2+4x+3}+\dfrac{1}{x^2+5x+6}\)
\(=\dfrac{1}{x^2+x+2x+2}+\dfrac{2x}{x^2+x+3x+3}+\dfrac{1}{x^2+2x+3x+6}\)
\(=\dfrac{1}{x\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{x\left(x+1\right)+3\left(x+1\right)}+\dfrac{1}{x\left(x+2\right)+2\left(x+2\right)}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x\left(x+2\right)+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x^2+4x+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2}{x+3}\)
a) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{1+x+1}\) \(=\dfrac{x^2.\left(x-1\right)\left(x+2\right)}{\left(x+1\right).\left(x-1\right)\left(x+2\right)}+\dfrac{2x.\left(x+2\right)}{\left(x-1\right).\left(x+1\right).\left(x+2\right)}+\dfrac{\left(x-1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^2.\left(x-1\right).\left(x+2\right)+2x.\left(x+2\right)+\left(x-1\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3-2x^2+2x^2+4x+x^2-1}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{\left(x^2-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{x^3+2x^2-x-2}\)