K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{n-1}+\sqrt{n}=11\Leftrightarrow\sqrt{n}-1=11\Leftrightarrow\sqrt{n}=12\)

<=>n=144

vậy n=144

4 tháng 2 2016

minh moi hok lop 6 thoi

25 tháng 12 2018

Sau khi ib với Hoàng Nguyễn  thì đề bài như sau

Tìm \(n\inℕ\)biết

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

ĐKXĐ: n > 1

Ta đi c/m bài toán tổng quát

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

                                  \(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)

                                   \(=\sqrt{a}-\sqrt{a-1}\)

Áp  dụng vào bài toán đc

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)

\(\Leftrightarrow\sqrt{n-1}-1=11\)

\(\Leftrightarrow\sqrt{n-1}=12\)

\(\Leftrightarrow n-1=144\)

\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)

Vậy  n = 145

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

8 tháng 10 2018

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)

16 tháng 9 2020

a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

16 tháng 9 2020

\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)