K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác ABC vuông tại A nên ta có:

A B 2  = BH.BC =2.(2+6)=2.8=16

suy ra AB = 4cm

Diện tích hình tròn tâm (O) là :

S=π. A B / 2 2 = π. 4 / 2 2  = 4π ( c m 2 )

23 tháng 6 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có AB=4cm ⇒ OB =2cm

Tam giác OBH có OB = OH =HB = 2cm nên tam giác OBH đều

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ABC có:

A H 2  = HB.HC =2.6=12

Suy ra: AH =2. 3 cm

Diện tích tam giác AHB:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tổng diện tích hai hình viên phân AmH và BnH bằng diện tích nửa hình tròn tâm O đường kính AB trừ diện tích tam giác AHB có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

10 tháng 5 2018

Bạn tự vẽ hình nha

a)Ta có góc BEH =90 độ (góc nội tiếp chắn nửa đường tròn)

và góc FHC = 90 độ (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác AFHE , ta có:

góc EAF =90 độ (tam giác ABC vuông tại A)

góc AEH =90 độ (cmt)

góc AFH=90 độ (cmt)

=> tứ giác AFHE là hình chữ nhật (tứ giác có 3 góc vuông)

b)Gọi I là giao điểm của AH và EF

Ta có: AH=EF (hcn AFHE) (1)

mà 2 đường chéo AH và EF cắt nhau tại I (vẽ thêm)

=>I là trung điểm của AH và EF (2)

từ (1) và (2)=> IE=IH=IA=IF

Ta có: góc IHF =góc ACH (phụ với góc HAC)

mà góc IHF = góc IFH (tam giác IHF cân tại I (IH=IF) )

=>góc ACH = góc IFH (cùng = góc IHF)

mà góc IFH= góc AEF (2 góc so le trong của AE song song HF(cùng vuông góc AC))

=>góc AEF =góc ACH=>tứ giác BEFC nội tiếp đường tròn

c)Gọi J là tâm của nửa đường tròn đường kính BH

và K là tâm của nửa đường tròn đường kính HC

Ta có: tam giác KFC cân tại K (KF=KC)

=>góc KFC = góc KCF mà góc KCF=góc IFH (cmt)

=>góc KFC =góc IFH (cùng =góc KCF)

mà góc KFC + góc HFK =90 độ (góc HFC =90 độ)

=>góc IFH + góc HFK =90 độ => góc IFK =90 độ

=>EF là tiếp tuyến của nửa (K) (I thuộc EF) (3)

Ta lại có: tam giác JEH cân tại J (JE=JH)

=> góc JEH =góc JHE

mà góc JHE = góc HCF ( 2 góc so le trong của HE song song CA ( cùng vuông góc AB) )

và góc HCF = góc AEF (cmt)

=>góc JEH= góc AEF

mà góc AEF + góc HEF = 90 độ (góc HEA = 90 độ)

=>góc JEH + góc HEF =90 độ => góc JEF = 90 độ

=>EF là tiếp tuyến của nửa (J) (4)

Từ (3) và (4) => EF là tiếp tuyến chung 2 nửa dường tròn dường kính BH và HC

10 tháng 5 2018
Đề mình khác mà câu trả lời bạn cũng khác so với đề
29 tháng 12 2017

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0
24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2

a: O là trung điểm của BC

b: Xét \(\left(\dfrac{BH}{2}\right)\) có

ΔBDH là tam giác nội tiếp

BH là đường kính

Do đó: ΔBDH vuông tại D

Xét \(\left(\dfrac{CH}{2}\right)\)

ΔCHE nội tiếp đường tròn

CH là đường kính

Do đó: ΔCHE vuông tại E

Xét tứ giác ADHE có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

18 tháng 9 2021

tính bán kính đường tròn ngoại tiếp làm sao ạ?