cho hình thang ABCD có 2 đường chéo cắt nhau ở O. Tính diện tích hình thang ABCD biết diện tích AOC = 9cm2 diện tích BOD = 27cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang ABCD cho ta SAID =SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 hình tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 hình tam giác CIB và CID ta có IB/ID = n/98
=> 24,5/n = n/9
n x n = 98 x 24,5 = 2401
Vậy n = 49
=> SABCD = 24,5 + 98 + 49 + 49 = 220,5 cm2
Kẻ BE ⊥ DC ( E ∈ DC ) ⇒ ∠BEC = 90o
AH ⊥ DC ( gt ) ⇒ ∠AHD = 90o
Vì ABCD là hình thang cân nên AD = BC , ∠D = ∠C
Xét ΔAHD và ΔBEC có AD = BC , ∠D = ∠C , ∠AHD = ∠BEC ( =90o )
⇒ ΔAHD = ΔBEC ( g.c.g )
⇒ DH = EC , AH = BE = 8 cm
BE ⊥ DC, AH ⊥ DC ⇒ AH // BE
Xét tứ giác ABEH có AH // BE, AH = BE
⇒ ABEH là hình bình hành ⇒ AB = HE = HC - EC = HC - DH = 12 - DH
Diện tích hình thang ABCD là
\(\dfrac{DC+AB}{2}\).AH=\(\dfrac{DC+12-DH}{2}\).AH = \(\dfrac{HC+12}{2}\).AH=\(\dfrac{12+12}{2}\).8=96cm2
Vậy SABCD = 96cm2
Kẻ AH vuông góc DC,BK vuông góc DC
Xéttứ giác ABKH có
AB//KH
AH//BK
=>ABKH là hình bình hành
=>AH=BK
=>\(S_{ADC}=S_{BDC}\)
=>\(S_{ADO}=S_{BOC}\)
\(\dfrac{S_{AOB}}{S_{BOC}}=\dfrac{OA}{OC}=\sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\)
\(\dfrac{S_{AOD}}{S_{DOC}}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
=>\(\dfrac{4}{S_{AOD}}=\dfrac{S_{AOD}}{9}\)
=>\(S_{AOD}=6\left(cm^2\right)\)
=>\(S_{BOC}=6\left(cm^2\right)\)
\(S_{ABCD}=6+6+4+9=10+15=25\left(cm^2\right)\)
cố giúp mình nhé