CHO TAM GIÁC ABC CAN TAI A GOI D LA TRUNG ĐIỂM CANH BC KẺ DE VUONG GOC AB, DE VUONG GOC AC
CMR: TAM GIAC DEB=TAM GIAC DFC
b) tam giac AED=TAM GIAC AFD
C) AD LA TIA PHAN GIAC CUA GOA BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tam giac DFC va tam giac DEB có
DB=DC
D CHUNG
GÓC DFC= GOC DEB
=> TAM GIÁC DEB = TAM GIÁC DFC(GCG)
B,XÉT TAM GIÁC AED VÀ TAM GIÁC AFD CO
AD CHUNG
AF=AE
GÓC AFD = GÓC AED
=> TAM GIÁC AED = TAM GIÁC AFD (CGC)
Giải:
a) Xét \(\Delta DEB,\Delta DFC\) có:
\(\widehat{E_2}=\widehat{F_2}=90^o\)
DB = DC ( \(=\frac{1}{2}BC\) )
\(\widehat{B}=\widehat{C}\) ( t/g ABC cân tại A )
\(\Rightarrow\Delta DEB=\Delta DFC\) ( c.huyền - g.nhọn ) ( đpcm )
b) Vì \(\Delta DEB=\Delta DFC\)
\(\Rightarrow DE=DF\) ( cạnh t/ứng )
Xét \(\Delta AED,\Delta AFD\) có:
AD: cạnh chung
\(\widehat{E_1}=\widehat{F_1}=90^o\)
DE = DF ( cmt )
\(\Rightarrow\Delta AED=\Delta AFD\) ( c.huyền - c.g.vuông ) ( đpcm )
c) Vì \(\Delta AED=\Delta AFD\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\) ( đpcm )
a, Vì tam giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}\) ( 2 góc ở đáy bằng nhau )
Xét tam giác DEB và tam giác DFC có:
BD = DC ( D là trung điểm của đoạn thẳng BC )
\(\widehat{BED}=\widehat{CFD}\) (=90*)
\(\widehat{B}=\widehat{C}\) (CMT)
Do đó: \(\Delta DEB=\Delta DFC\left(g-c-g\right)\) đpcm
b, Vì AE + EB = AB
AF + FC = AC
mà AB = AC ( tam giác ABC cân tại A)
và BE = CF \(\left(\Delta BED=\Delta CFD\right)\)
=> AE = AF
Xét hai tam giác AED và AFD có:
AE = AF (CMT)
AD: Cạnh chung
\(\widehat{AED}=\widehat{AFD}\) (=90*)
Do đó: \(\Delta AED=\Delta AFD\left(c-g-c\right)\) đpcm
c, Vì tam giác AED = t/g AFD (câu b)
=> \(\widehat{A1}=\widehat{A2}\) ( 2 góc tương ứng )
Vì AD nằm giữa AE và AF
và \(\widehat{A1}=\widehat{A2}\)
=> AD là tia phân giác của \(\widehat{BAC}\) đpcm
a)
\(BC^2=AC^2+AB^2=6^2+3^2=36+9=45\)
\(BC=\sqrt{45}\left(cm\right)\)
b)
ta có: AE=1/2 AC=6/2=3(cm)
xét tam giác AED và ABD có:
AE=AB=3cm
EAD=BAD(gt)
AD(chung)
=> tam giác AED=ABD(c.g.c)
c)
theo câu b, ta có tam giác AED=ABD(c.c.g)
=> AED=ABD
xét tam igasc BAC và tam giác EAM có :
DBA=AEB(cmt)
AB=AE
CAM(chung)
=> tam giác BAC=EAM(c.g.c)
=> AC=AM
có CAM=90
=> tam giác CAM vuông cân tại A
Mk chỉ biết lm câu a thuj nka, mk ko học giỏi toán nên có j sai thì xin lỗi bn nka! :)))
a) Xét t.g BAD và t.g BED
Ta có: Góc A = Góc B = 90*( gt )
BD là cạnh chung
B1 = B2 ( BD là tia phân giác của góc B)
=> T.g BAD = T.g BED ( g.c.g )
a) ap dung pytago ta co:BC^2=AB^2+AC^2=4^2+4^2=32 <=>BC=4 can 2
b) xet 2 tam giac AHB va AHC co:
AB=AC(GT)
goc B=goc C(tam giac ABC vuong can)
Suy ra tam giac AHB=tam giac AHC
Do do HB=HC(2 canh tuong ung)
hay D la trung diem cua BC
vẽ cái hình ra
a) tam giac DEB=tam giac DFC (ch-gn)=>EB=FC
b) ta có AE+EB=AB
AF+FC=AC
MÀ AB=AC (tam giac ABC cân tại A)
EB=FC (cmt)
=>AE=AF
tam giac AED=tam giac AFD (ch-cgv)
c) tam giac ABC có AD là trung tuyến (D là trung điểm của BC)
=> AD là pg của góc BAC