giải giúp em bài này ạ: Một mảnh đất hình chữ nhật có chu vi là 360m, Chiều rộng bằng 2/7 chiều dài. Nếu chiều rộng của mảnh đất tăng 20% của nó và giữ nguyên chiều dài thì diện tích của thửa ruộng sẽ tăng thêm bao nhiêu phần trăm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
=>Chiều dài là x+7
Theo đề, ta có: (x+2)(x+7)=x(x+7)+30
=>x^2+9x+14=x^2+7x+30
=>2x=16
=>x=8
=>Chu vi là (8+15)*2=46(m)
Gọi \(x\) là chiều dài \(\left(x>0\right)\)
\(x+7\) là chiều rộng
Theo đề, ta có :
\(\left(x+7+2\right)x=x\left(x+7\right)+30\)
\(\Leftrightarrow x^2+9x=x^2+7x+30\)
\(\Leftrightarrow x^2-x^2+9x-7x=30\)
\(\Leftrightarrow2x=30\)
\(\Leftrightarrow x=15\left(tmdk\right)\)
Chiều dài là \(15m\)
Chiều rộng là \(15+7=22m\)
Vậy chu vi mảnh đất là : \(\left(15+22\right).2=74\left(m\right)\)
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài mảnh đất là: 2x (đk x > 0 )
chiều rộng mảnh đất là: x
Diện tích ban đầu là: 2x.x = 2x2
Tăng chiều dài 5m: 2x + 5(m)
Diện tích sau khi tăng là: x.(2x + 5) = 2x2 + 5x (m2)
Theo đề ta có phương trình sau:
\(2x^2+25=2x^2+5x\)
\(\Leftrightarrow2x^2-2x^2+25=5x\)
\(\text{⇔ 25 = 5x}\)
\(\text{⇔ 5 = x. }\)
Chiều dài là:
5.2 = 10 (m)
Vậy chiều rộng là: 5m chiều dài là: 10m
nửa chu vi: 100/2 = 50 m
Gọi chiều rộng của mảnh vườn là x(m)(x>0)
=>chiều dài mảnh vườn là 50-x(m)
Diện tích mảnh vườn ban đầu là x(50-x)
chiều rộng khi tăng là x+3(m)
chiều dài khi giảm là 50-x-4=46-x(m)
Diện tích mới của mảnh vườn là:(x+3).(46-x)( m 2 )
Vì diện tích mới của mảnh vườn giảm 2m vuông nên ta có pt: (x+3)(46-x)=x(50-x)-2
Giải pt trên ta được x=20(TMĐK)
Vậy diện tích mảnh vườn là :20(50-20)=600( m 2 )
Gọi chiều rộng,chiều dài của thửa ruộng ban đầu lần lượt là x,y(m,0<x<y)
Nửa chu vi thửa ruộng là: 100:2=50(m)
=>x+y=50(1)
Diện tích của thửa ruộng ban đầu là :xy(m2)
Theo bài ra:
Chiều rộng thửa ruộng sau khi tăng thêm là: x+3(m)
Chiều dài thửa ruộng sau khi giảm là: y-4(m)
Diện tích vườn giảm 2m2
=> (x+3)(y-4)=xy-2(2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=50\\\left(x+3\right)\left(y-4\right)=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+3y-12=xy-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=xy-2-xy+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=150\\-4x+3y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=140\\x+y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\end{matrix}\right.\)(TMĐK)
Vậy chiều dài ban đầu của thửa ruộng là 30m
chiều rộng ban đầu của thửa ruộng là 20m
Gọi chiều dài là x (52>x>0)m
chiều rộng là 104:2-x m
diện tích ban đầu là x(52-x) m2
vì tăng chiều rộng để mảnh đất trở thành hình vuông nên cạnh hình vuông là x m
diện tích hình vuông là x2
vì khi tăng chiều rộng thì diện tích tăng 240 m2 nên ta có pt
x(52-x)=x2-240
giải pt x=-4 ktm
x=30 tm
chiều dài của hcn là 30 m
chiều rộng của hcn là 52-30=22 m
diện tích hcn ban đầu là 30.22=660 m2
Gọi chiều dài mảnh vườn ban đầu là x(m)
thì chiều rộng mảnh vườn ban đầu là 52-x(m)
Diện tích ban đầu của mảnh vườn là x(52-x)(m2)
Diện tích lúc sau của mảnh vườn là x2 =x(52-x)+240(m2)
Đk: 0<x<104
Theo đề bài ta có
\(x^2=x\cdot\left(52-x\right)+240\)
⇔\(x^2=52x-x^2+240\)
⇔\(-2x^2+52x+240=0\)
⇔\(\left[{}\begin{matrix}x=30\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)
Vậy diện tích ban đầu của mảnh vườn là \(30\cdot\left(52-30\right)=660\)(m2)
Cạnh hình vuông là :
60 : 4 = 15
Chiều dài hình chữ nhật là : 15 + 2 = 17 cm
Chiieuf rộng hình chữ nhật là : 15 - 2 = 13 cm
Điện tích hình chữ nhật là : 13 x 17 = 221 cm2
Đáp số : 221 cm2
Lời giải:
Chiều rộng tăng 20% và giữ nguyên chiều dài thì diện tích tăng thêm 20% so với diện tích cũ.
nhưng bài này lớp 4 mà có phải lớp 5 đâu