Cho mũ xOy khác góc bẹt,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot, vẽ đường thẳng vuông góc với Ot, đường thẳng này cắt Ox,Oy lần lượt tại A và B a. chứng mình rằng: tam giác HOA= tam giácHOB b. Chứng minh rằng: OA=OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆AOH và ∆BOH có:
ˆAOH=ˆBOH (gt) OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB (cmt)
ˆOAC = ˆOAB (gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB (hai cạnh tương ứng)
ˆOAC= ˆOBC ( góc tương ứng).
Ta có hình vẽ:
Xét tam giác AOH và tam giác BOH có
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
\(\widehat{AHO}\)=\(\widehat{BHO}\) (GT)
OH: cạnh chung
Vậy \(\Delta\)AOH = \(\Delta\)BOH (g.c.g)
Ta có Hình vẽ
a) xét \(\Delta OAH\&\Delta OBH\)có
\(\widehat{H1}=\widehat{H2}\left(=90^o\right)\)
OH chung
\(\widehat{O1}=\widehat{O2}\)
\(\Rightarrow\Delta OAH=\Delta OBH\)
=> OA=OB ( 2 cạnh tương ứng )