Cho tam giác ABC cân tại A, họi M là trung điểm của AC. Từ A vẽ đường thảng // với BC, đường thảng này cắt tia BM tại D. Chứng minh:
a/ Tam giác BMC = tam giác AMD
b/ AB=CD
c/ Tam giác ACD là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBC và ΔMDA có
góc MCB=góc MAD
MC=MA
góc BMC=góc DMA
=>ΔMBC=ΔMDA
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
=>AB=CD
=>CA=CD
=>ΔCAD cân tại C
c: góc BCD=góc BAD
góc BCE=180 độ-góc ACB
=góc ABC+góc BAC
=góc ACB+góc BAC
=góc CAD+góc BAC
=góc BAD
=>góc BCD=góc BCE
d: Xét ΔEBD có
EM là trung tuyến
EC=2/3EM
=>C là trọng tâm
=>DC đi qua trung điểm của BE
a) Xét ΔBMC và ΔDMA có
MB=MD(gt)
\(\widehat{BMC}=\widehat{AMD}\)(hai góc đối đỉnh)
MC=MA(M là trung điểm của AC)
Do đó: ΔBMC=ΔDMA(c-g-c)
nên \(\widehat{MBC}=\widehat{MDA}\)(hai góc tương ứng)
mà \(\widehat{MBC}\) và \(\widehat{MDA}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔABM và ΔCDM có
MB=MD(gt)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc tương ứng)
MA=MC(M là trung điểm của AC)
Do đó: ΔABM=ΔCDM(c-g-c)
nên AB=CD(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên CD=AC
Xét ΔACD có AC=DC(cmt)
nên ΔACD cân tại C(Định nghĩa tam giác cân)