Giá trị nhỏ nhất của biểu thức A = Ix + 2^2015I + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có |x + 22015| > 0
=> |x + 22015| + 2 > 2
=> A > 2
Dấu "=" xảy ra <=> x + 22015 = 0
<=> x = -22015
KL: Amin = 2 <=> x = -22015
Có: |2x + 2015| > 0
=> |2x + 2015| - 3 > -3
=> A > -3
Dấu "=" xảy ra
<=> 2x + 2015 = 0
<=> 2x = -2015
<=> x = \(\frac{-2015}{2}\)
KL: Amin = -3 <=> x = \(\frac{-2015}{2}\)
14
nếu đúng thì tick cho mình nha các bạn
Bài 1: -Sửa đề: a,b,c>0
-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Quay lại bài toán:
\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)
\(\Rightarrow3\left(ab+bc+ca\right)\le1\)
\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)
Bài 2:
-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.
\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)
\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)
\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)
-Quay lại bài toán:
\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)
\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)
-Vậy \(P_{min}=1\)
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}